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Software is Complicated and Vulnerable
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Software is Complicated and Vulnerable

 Code: different sources
 Third-party libraries, plugins …

 Vulnerabilities in one module could compromise the whole 
application
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Heartbleed



Software Fault Isolation

 SFI: security by isolation
 Split application into different fault domains

 Separate each domain from others

 Compromised fault domains cannot affect others

 Widely used in x86 systems
 Linux kernel: LXFI

 User level applications: Native client, Vx32 …
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Our work focuses on ARM architecture



ARM Architecture is Popular
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750 million Android devices in 2013

99% are based on ARM architecture

ARM is catching up in the data

center server market



SFI on ARM Architecture

 Native client for ARM
 Compiler based solution

 Limitations: assumption on memory layout, hard to efficiently support 
self-modifying code, and JIT compiling

 ARMor
 Binary rewriting

 High performance overhead
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Our Solution: ARMlock

 Strict isolation
 Memory read/write, code execution, system calls

 Low performance overhead
 Sandbox context switch, sandbox itself

 Compatibility
 Memory layout, self-modifying code, JIT compiling

 Leverage an often overlooked hardware feature: Memory domain
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Background: ARM Memory Domain
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Threat Model 

 OS kernel is trusted

 Host application is benign but could be vulnerable

 External modules: vulnerable or malicious
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Isolate compromised or malicious modules 
from the host application 



ARMlock Architecture
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Sandbox Creation

 Host application asks ARMlock kernel module to create a sandbox

 Kernel module initializes the sandbox
 Locate first level page table entries 

 Assign different memory domains to the host application and sandboxes

 Memory domain assignment cannot be changed by the sandbox
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Sandbox Switch

 DACR register is saved in the thread control block 

 DACR register is updated when switching sandboxes

 Only current domain (and kernel) are accessible, not other domains

 Multithreading is naturally supported

 Each CPU core has its own DACR register
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Cross-sandbox Communication

 Inter-module function call

 Inter-module memory reference
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Inter-module Function Invocation

 Two new system calls
 ARMlock_CALL: inter-module function call

 ARMlock_RET: inter-module function return
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Inter-module Function Invocation

 Inter-module function invocation
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Inter-module Function Invocation

16

Call
Sandbox1

_func

Sandbox 0

Prepare context
Issue ARMlock_CALL

Switch stack etc.
Set PC to entry gate

ARMlock_CALL returns
Prepare context
Call real function

Issue 
ARMlock_RET

Sandbox1
_func

Sandbox 1

Switch stack etc.
Set PC to return gate

ARMlock_RET returns

Restore context
Return

Stub

Entry gate

Return gate

ARMlock kernel module

Caller
Callee



Inter-module Memory Reference

 Kernel assisted memory copy
 Kernel marks both domains as accessible

 Copy data into the destination sandbox

 Restore the DACR register
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Inter-module Memory Reference

 Shared memory domain: using a domain which is accessible in 
both sandboxes

 Data from sandboxed modules should be sanitized 
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System Call Interposition

 Recent Linux system has 380+ system calls
 Normal applications may use less than that, e.g., around 60

 More system calls may expose more kernel vulnerabilities

 Host applications in ARMlock could control system calls available 
to sandboxed modules

 Implemented through the seccomp-BPF framework
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Evaluation

 Security analysis

 Performance overhead
 Sandbox switch latency

 Sandbox itself
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Security Analysis

 Cross-sandbox communication
 Inter-module function invocation

 Inter-module memory reference

 Kernel assisted memory copy

 Shared memory domain: race condition
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Performance Evaluation: Configuration
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Item Configuration

CPU ARM1176JZF-S 700MHz

RAM 512MB

OS Raspbian (based on Debian)

Kernel Linux 3.6.11

LMbench Version 2

nbench Version 2.2.3



Sandbox Switch Latency

 Call a simple inc function inside the sandbox
 1 second: 903,343 inter-module calls -- 1.1 μs for each call
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Sandbox Switch Latency

 One sandbox switch: two system calls
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Performance Overhead
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Discussion

 Some developer efforts are required
 Refactor the application into domains

 Avoid frequent domain switch

 Need to use short format page table in latest ARM architecture

 Kernel-level sandbox

 Other OS support
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Takeaway 

 ARMlock: a hardware-based fault isolation for ARM
 Strict isolation

 Low performance overhead

 Better compatibility
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