
ARMlock: Hardware-based Fault 
Isolation for ARM

Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang

North Carolina State University
Xi’an Jiaotong University
Florida State University



Software is Complicated and Vulnerable

125

86

116

189

102

152

266
249

175

110

43 44
63

74 78

3 7 3 4

27

0

50

100

150

200

250

300

2010 2011 2012 2013 2014

Number of CVEs

Linux Chrome Apache Libpng

2

17 million SLOC 

15 million SLOC 

400 thousands SLOC 

2 million SLOC 



Software is Complicated and Vulnerable

 Code: different sources
 Third-party libraries, plugins …

 Vulnerabilities in one module could compromise the whole 
application

3

Heartbleed



Software Fault Isolation

 SFI: security by isolation
 Split application into different fault domains

 Separate each domain from others

 Compromised fault domains cannot affect others

 Widely used in x86 systems
 Linux kernel: LXFI

 User level applications: Native client, Vx32 …

4

Our work focuses on ARM architecture



ARM Architecture is Popular

5

750 million Android devices in 2013

99% are based on ARM architecture

ARM is catching up in the data

center server market



SFI on ARM Architecture

 Native client for ARM
 Compiler based solution

 Limitations: assumption on memory layout, hard to efficiently support 
self-modifying code, and JIT compiling

 ARMor
 Binary rewriting

 High performance overhead

6



Our Solution: ARMlock

 Strict isolation
 Memory read/write, code execution, system calls

 Low performance overhead
 Sandbox context switch, sandbox itself

 Compatibility
 Memory layout, self-modifying code, JIT compiling

 Leverage an often overlooked hardware feature: Memory domain

7



Background: ARM Memory Domain

8

Domain 0

Domain 1

Domain 2

Domain 14

…

Domain 15

lw r0, [r1]
…
…

lw r1, [r2]

D1D0 D14 D15

Type Value Description

No Access 00 No access permitted

Client 01 Permissions defined by page tables

Reserved 10 Reserved

Manager 11 No permissions check (unlimited access)

0001 … 00 00

X

Virtual memory space

Sandboxed code

DACR Register

ARM domain access control

√



Threat Model 

 OS kernel is trusted

 Host application is benign but could be vulnerable

 External modules: vulnerable or malicious

9

Isolate compromised or malicious modules 
from the host application 



ARMlock Architecture

10

Sandboxed untrusted module

ARMlock kernel 
extension

Host application

Linux kernel

function function

Kernel mode

User mode

Cross-sandbox communication (with the help of ARMlock kernel extension)

System call interposition

data data



Sandbox Creation

 Host application asks ARMlock kernel module to create a sandbox

 Kernel module initializes the sandbox
 Locate first level page table entries 

 Assign different memory domains to the host application and sandboxes

 Memory domain assignment cannot be changed by the sandbox

11



Sandbox Switch

 DACR register is saved in the thread control block 

 DACR register is updated when switching sandboxes

 Only current domain (and kernel) are accessible, not other domains

 Multithreading is naturally supported

 Each CPU core has its own DACR register

12



Cross-sandbox Communication

 Inter-module function call

 Inter-module memory reference

13



Inter-module Function Invocation

 Two new system calls
 ARMlock_CALL: inter-module function call

 ARMlock_RET: inter-module function return

14



Inter-module Function Invocation

 Inter-module function invocation

15

Sandboxed untrusted module

ARMlock kernel 
extension

Host application

Linux kernel

stubcaller

calleegategate

Kernel mode

User mode

Inter-domain transfer (with the help of ARMlock kernel extension)

Intra-domain transfer (with the help of ARMlock user library)



Inter-module Function Invocation

16

Call
Sandbox1

_func

Sandbox 0

Prepare context
Issue ARMlock_CALL

Switch stack etc.
Set PC to entry gate

ARMlock_CALL returns
Prepare context
Call real function

Issue 
ARMlock_RET

Sandbox1
_func

Sandbox 1

Switch stack etc.
Set PC to return gate

ARMlock_RET returns

Restore context
Return

Stub

Entry gate

Return gate

ARMlock kernel module

Caller
Callee



Inter-module Memory Reference

 Kernel assisted memory copy
 Kernel marks both domains as accessible

 Copy data into the destination sandbox

 Restore the DACR register

17



Inter-module Memory Reference

 Shared memory domain: using a domain which is accessible in 
both sandboxes

 Data from sandboxed modules should be sanitized 

18

lw r0, [r1]
…
…

lw r1, [r2]

Sandbox 0

lw r3, [r1]
…
…

lw r5, [r2]

Sandbox 1
Accessible

Non-accessible

Domain 0

Domain 1

Domain 2

Domain 14

…

Domain 15

Memory space

Domain 0

Domain 1

Domain 2

Domain 14

…

Domain 15

Memory space



System Call Interposition

 Recent Linux system has 380+ system calls
 Normal applications may use less than that, e.g., around 60

 More system calls may expose more kernel vulnerabilities

 Host applications in ARMlock could control system calls available 
to sandboxed modules

 Implemented through the seccomp-BPF framework

19



Evaluation

 Security analysis

 Performance overhead
 Sandbox switch latency

 Sandbox itself

20



Security Analysis

 Cross-sandbox communication
 Inter-module function invocation

 Inter-module memory reference

 Kernel assisted memory copy

 Shared memory domain: race condition

21

Sandboxed module

ARMlock

Host application

Linux kernel

1

function function

data data
2



Performance Evaluation: Configuration

22

Item Configuration

CPU ARM1176JZF-S 700MHz

RAM 512MB

OS Raspbian (based on Debian)

Kernel Linux 3.6.11

LMbench Version 2

nbench Version 2.2.3



Sandbox Switch Latency

 Call a simple inc function inside the sandbox
 1 second: 903,343 inter-module calls -- 1.1 μs for each call

23



Sandbox Switch Latency

 One sandbox switch: two system calls

24

2.6
5.8

2778.3 2631

1 1

16.4

3.1

17.4

1 x

10 x

100 x

1,000 x

10,000 x

ARMlock clock exec fork getpid null sig_handle sig_install stat



Performance Overhead

0.584
0.661

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Internal

External

25



Discussion

 Some developer efforts are required
 Refactor the application into domains

 Avoid frequent domain switch

 Need to use short format page table in latest ARM architecture

 Kernel-level sandbox

 Other OS support

26



Takeaway 

 ARMlock: a hardware-based fault isolation for ARM
 Strict isolation

 Low performance overhead

 Better compatibility

27



28

Q&A


