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ABSTRACT
This paper presents RegVault, a hardware-assisted lightweight data
randomization scheme for OS kernels. RegVault introduces novel
cryptographically strong hardware primitives to protect both the con-
fidentiality and integrity of register-grained data. RegVault leverages
annotations to mark sensitive data and instruments their loads and
stores automatically. Moreover, RegVault also introduces new tech-
niques to protect the interrupt context and safeguard the sensitive
data spilling. We implement a prototype of RegVault by extending
RISC-V architecture to protect six types of sensitive data in Linux
kernel. Our evaluations show that RegVault can defend against the
kernel data attacks effectively with a minimal performance overhead.
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1 INTRODUCTION
Memory safety issues (i.e., memory corruption and disclosure) re-
main to be one of the biggest threats to modern systems, causing
about 70% of all patches [8]. Exploiting the memory corruption,
attackers can overwrite the control data to achieve control flow hi-
jacking or the non-control data to achieve data-oriented attacks.
Moreover, memory disclosure leaks return addresses or function
pointers, allowing attackers to bypass KASLR easily. Unfortunately,
these security-critical data are usually small-grained (i.e., register-
grained) and mixed with non-security-critical data. Therefore, the
page-grained (i.e., 4KB) protection is too coarse-grained and cannot
be applied to protect these data.

To protect these small-grained data, researchers proposed data
space randomization [6] to randomize the data in-memory represen-
tations with secret keys. Though the attacker can still overwrite the
data, the corrupted data will be de-randomized to garbage values
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without correct secret keys. Therefore, data randomization is effec-
tive for defending against memory corruption and disclosure. How-
ever, due to the lack of hardware randomization primitives, existing
data randomization schemes [6, 19] use XOR for the randomization
and are vulnerable to memory disclosures. Moreover, research works
also use AES primitives for control and non-control data encryp-
tion [7, 14, 16]. However, those AES primitives are designed for
bulky data encryption and are not suitable for the register-grained
data randomization. Therefore, how to design cryptographically
strong hardware randomization primitives for register-grained data
and how to leverage these hardware primitives to achieve secure
data randomization are still open problems.

In this paper, we present an initial step in resolving these problems.
We develop a hardware-assisted register-grained data randomiza-
tion scheme named RegVault for OS kernels. To achieve RegVault,
at the hardware level, we design and implement novel hardware
primitives, supporting both the confidentiality and integrity protec-
tion for register-grained data. At the software level, we develop the
annotation-based approach to mark the sensitive data and extend the
LLVM compiler to automatically instrument the sensitive data loads
and stores with hardware primitives. To guarantee comprehensive
randomization, we also develop two new techniques—the chain-
based interrupt context protection to protect the interrupt context
and the register spilling protection to protect the register spilling.

To demonstrate the effectiveness of RegVault, we build a proto-
type of RegVault to protect the runtime data of the Linux kernel,
including two types of control data and four types of non-control
data. The security analysis indicates that RegVault can defend against
the kernel data attacks effectively. The performance overhead in-
troduced by RegVault is around 2.5% for micro-benchmarks and
is close-to-zero for the macro-benchmark. In summary, this paper
makes the following contributions.

• New Hardware Primitives. We design and implement novel
hardware primitives, providing cryptographically strong confi-
dentiality and integrity protection supports for register-grained
data. We further propose the cryptographic lookaside buffer to
reduce the performance overhead.

• New Protection Techniques. We propose chain-based interrupt
context protection to protect interrupt contexts. We also propose
register spilling protection to safeguard sensitive data spilling.

• Prototype and Evaluation. We implement a prototype of Reg-
Vault on Linux kernel v5.8.18, protecting six types of sensitive
data. Our evaluations show that RegVault can defend against ker-
nel data attacks effectively with a minimal performance overhead.

2 REGVAULT ARCHITECTURE
2.1 Threat Model and Assumptions
In our threat model, the attacker has full control of the user space,
such as running any programs and invoking any system calls. The



Figure 1: Overview of RegVault.

Table 1: RegVault cryptographic primitives.

Name Mnemonic
context-aware

register encrypt
cre[x]k rd, rs[e:s], rt

context-aware
register decrypt

crd[x]k rd, rs, rt, [e:s]

attacker can also exploit kernel vulnerabilities to achieve arbitrary
kernel memory read capability. Moreover, the attacker can overwrite
or substitute any randomized data in kernel memory. However, the
attacker cannot read or write the registers directly by using laser
fault injections. We assume the kernel code is properly protected so
that the attacker cannot corrupt existing code or inject new kernel
code. Moreover, side-channel attacks are out of scope of this paper.

2.2 RegVault Overview
RegVault is a hardware-assisted selective data randomization archi-
tecture for operating system kernels. The basic idea of RegVault
is to encrypt the annotated data in the memory and decrypt these
data in registers. As shown in Figure 1, RegVault consists of the
hardware and the software supports. For the hardware, RegVault
extends 64-bit RISC-V core to implement lightweight cryptographic
primitives, which are used to encrypt and decrypt the selected data to
achieve selective data confidentiality and integrity protection (§2.3).
For the software, RegVault leverages annotations and extends the
compiler to instrument hardware primitives automatically (§2.4). To
demonstrate the effectiveness, we apply RegVault to protect sensitive
data in Linux kernel, which is discussed in §3.

2.3 Hardware Support
2.3.1 RegVault Cryptographic Primitives. Integrity enforce-
ment based on traditional block ciphers is vulnerable to substitution
attacks, i.e., swapping two encrypted values to bypass integrity check.
Therefore, to provide strong integrity guarantee, RegVault chooses
to use the tweakable block cipher QARMA [1] as the underlying
cryptographic algorithm. QARMA takes 3 inputs: a 128-bit key, a
64-bit tweak and a 64-bit plaintext to produce a single 64-bit cipher-
text. By changing the tweak, tweakable block ciphers can produce
different ciphertexts even with the same key and plaintext. With
the tweak as an extra input, RegVault is able to defeat substitution
attacks against sensitive data by combining additional information
(such as the storage address of the data) into the randomization.

RegVault extends the RISC-V instruction set to provide light-
weight and fine-grained cryptographic primitives, as listed in Table 1.
The extended instructions are termed as context-aware cryptographic
instructions, as the tweak can be contextual information.

• cre[x]k rd, rs[e:s], rt is the encryption instruction. It se-
lects bytes within range [e:s] (i.e., s-th to e-th bytes) from
source register rs , encrypts them with the tweak in register rt
and the key in key register x, and puts the ciphertext in destination
register rd. Note that the bytes other than [e:s] are set to zero
before encryption for integrity checking purpose.

• crd[x]k rd, rs, rt, [e:s] is the decryption instruction. It
decrypts the value in rs with given tweak in rt and key x, and
puts the plaintext in rd. Moreover, it checks whether the bytes
other than [e:s] in plaintext remain zero. If not, the integrity
check fails and an exception is raised.

Dedicated for kernel data randomization, these instructions are not
executable in the user mode.

RegVault provides dedicated key registers (a master key m and 7
general keys a-g) by extending the CSRs. User space programs have
no access to any key registers. Operating system kernels can write
general key registers, but are not allowed to read them. Furthermore,
even the kernels are prohibited to read or write the master key.
Therefore, the master key can be used to encrypt other general keys
saved in the memory.

Leveraging the range selection field [e:s], these primitives pro-
vide flexible confidentiality and integrity protection. We choose
three typical scenarios to demonstrate how to use these primitives to
safeguard sensitive data, as shown in Figure 2.

• Pointer. RegVault encrypts and decrypts all bytes (i.e., with range
[7:0]) in the pointers directly (Figure 2a). Therefore, any cor-
rupted pointers in memory are decrypted into garbage values,
pointing to illegal addresses. RegVault also uses this way to pro-
tect 64-bit data that do not require integrity protection.

• 32-bit data. RegVault extends the 32-bit data to 64-bit and fills 0
to the upper 32-bit. To achieve this, the encryption sets the range
as [3:0] (Figure 2b Line 2). In the decryption, the upper 32-bit is
used for the integrity check (Line 6). Therefore, RegVault protects
both confidentiality and integrity for 32-bit data.

• 64-bit data. RegVault splits 64-bit data as two 32-bit data, en-
crypts and decrypts the low 4 bytes and high 4 bytes respectively
(Figure 2c). After the decryption and integrity check, RegVault
applies or operation to assemble the original 64-bit data (Line
11). In this way, RegVault protects both the confidentiality and
integrity for 64-bit data.

2.3.2 RegVault Crypto-Engine. To support the cryptographic
primitives, RegVault implements a crypto-engine in the RISC-V
pipeline. Before executing a cryptographic instruction, the engine
first checks its executability according to current privilege level. For
the encryption instruction, the engine first constructs the plaintext
according to the source register and the selected range, and then
performs the cryptographic operation. For the decryption instruction,
the engine first decrypts the value in the source register, and then
checks whether the bytes outside the selected range are zero. A failed
integrity check raises an exception.



1 # encrypt and store a pointer (in a0)
2 creak a0, a0[7:0], t1 ;encrypt pointer a0 using key reg a
3 sd a0, 0(s0) ;store the encrypted pointer
4 # load and decrypt a pointer
5 ld a0, 0(s0) ;load an encrypted pointer
6 crdak a0, a0, t1, [7:0] ;decrypt the pointer

(a) Pointer randomization.
1 # encrypt and store 32-bit data (in the low 4-byte of a0)
2 creak a0, a0[3:0], t1 ;encrypt the 32-bit data
3 sd a0, 0(s0) ;store the encrypted data
4 # load, decrypt and check 32-bit data
5 ld a0, 0(s0) ;load an encrypted data
6 crdak a0, a0, t1, [3:0] ;decrypt-and-check the 32-bit data

(b) 32-bit data randomization with integrity.
1 # encrypt and store 64-bit data (in a0)
2 creak a1, a0[3:0], t1 ;encrypt the low 4-byte data
3 creak a2, a0[7:4], t2 ;encrypt the high 4-byte data
4 sd a1, 0(s0) ;store the encrypted low 4-byte data
5 sd a2, 8(s0) ;store the encrypted high 4-byte data
6 # load, decrypt and check 32-bit data
7 ld a1, 0(s0) ;load the encrypted low 4-byte data
8 ld a2, 8(s0) ;load the encrypted high 4-byte data
9 crdak a1, a1, t1, [3:0] ;decrypt-and-check low 4-byte data

10 crdak a2, a2, t2, [7:4] ;decrypt-and-check high 4-byte data
11 or a0, a1, a2 ;recover the original 64-bit data

(c) 64-bit data randomization with integrity.

Figure 2: Data randomization using RegVault primitives. High-
light lines are instrumented primitives.
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Figure 3: RegVault kernel data randomization process.

2.3.3 Cryptographic Lookaside Buffer. To substantially reduce
the overhead of frequently-invoked cryptographic operations, we
propose to integrate a cache, named cryptographic lookaside buffer
(CLB), into the crypto-engine to hold recently-calculated results.
When executing cryptographic instructions, RegVault crypto-engine
first looks up CLB, before performing the multi-cycle operations.
CLB structure: CLB is a fully-associative cache, consisting of a
configurable number of entries. Each entry of the CLB contains 6
fields: the metadata for replacement, a valid bit v marking whether
the entry is valid, a key selection index ksel, the tweak, the plaintext,
and the ciphertext.
CLB operations: To reduce the entry size, CLB stores 3-bit key
selection indices instead of 128-bit keys. Therefore, when a key
register is updated, the stale CLB entries with the corresponding
ksel are invalidated. When querying, the CLB checks all entries
and sends the result to the pipeline directly if a valid matching entry
is found. Otherwise, the crypto-engine performs the cryptographic
operation and updates the CLB with the newly generated result. If
all entries are valid, CLB evicts one based on the least-recently-used
(LRU) replacement policy.

2.4 Software Support
Figure 3 illustrates the overall flow of RegVault kernel data ran-
domization. With the kernel source code as the input, RegVault first
annotates the data types that need to be randomized (§2.4.1). After
that, RegVault instruments the randomized data loads and stores
with cryptographic primitives (§2.4.2). Finally, to defeat data leak
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Figure 4: RegVault interrupt context protection.

and corruption on spilling, RegVault protects both the interrupt con-
text (§2.4.3) and register spilling (§2.4.4). The following sections
describe these steps in detail.

2.4.1 Data Annotation. Before instrumentation, RegVault needs
to know which data needs to be randomized. Inspired by the anno-
tation __randomize_layout used in Linux kernel currently, Reg-
Vault provides two annotation macros—__rand for confidentiality
only and __rand_integrity for both confidentiality and integrity
protection. For example, to protect uid in cred, the developer an-
notates it as kuid_t uid __rand_integrity. These macros set
storage sizes and alignments properly, and add compiler attributes
that are recognized by RegVault during the compiling stage. Note
that these macros are field-sensitive annotations on types, rather than
a single object instance. Moreover, RegVault provides two compiler
options to enable return address and function pointer protection.

2.4.2 Instruction Instrumentation. With annotations, RegVault
first collects the marked data types. Then, RegVault traverses all IR
instructions to identify all loads and stores on the marked data types.
Finally, RegVault inserts data encryption instructions with proper
tweaks before data stores, and data decryption instructions after data
loads. For example, to protect kernel pointers, RegVault instruments
pointer stores with the encryption primitives creak (Figure 2a Line
2) and pointer loads with the decryption primitives crdak (Figure 2a
Line 6). In addition, for 32-bit and 64-bit data protection, the instru-
mented code are shown in Figure 2b and 2c respectively. Moreover,
to defeat spatial substitution attacks, RegVault uses storage addresses
as encryption tweaks for most data. Therefore, RegVault should deal
with functions like memcpy properly. RegVault first identifies the
copied data type by tracing the type information of the source and
destination pointers, then re-encrypts the annotated fields within the
copied data using the new addresses as tweaks.

2.4.3 Interrupt Context Protection. During an interrupt, kernel
stores all general purpose registers into the interrupt context in mem-
ory. As a result, the unprotected interrupt context gives the attacker
chances to leak and corrupt these register values [2]. Therefore,
RegVault proposes a novel technique named chain-based interrupt
context protection (short for CIP), which not only encrypts the inter-
rupt context but also protects its integrity.

The basic idea of CIP is to form a chain-based de-randomization
process, so that the next register value is decrypted using the pre-
vious decrypted register value as the tweak, as shown in Figure 4.
Moreover, CIP inserts a zero value at the end of encryption and
decryption for integrity checking. In this way, CIP can detect any
corrupted register values in the middle of interrupt context, by ver-
ifying whether the decrypted ending zero remains zero. Moreover,



Table 2: Protected kernel data in RegVault.

Randomized Data Tweak Instrument

Control
Data

Return Addr Stack Pointer Type
Function Pointer Storage Addr Type

Non-control
Data

Kernel Keys Storage Addr Manual
Cred Struct Storage Addr Annotation
SELinux State Storage Addr Annotation
PGD Pointers Storage Addr Annotation

to enhance the security of CIP, we 1) use the storing address as the
tweak for the first register encryption to defeat spacial substitution
attacks; 2) use a dedicated key register for CIP to defeat cross-data-
type substitution attacks, and 3) maintain different interrupt keys for
different threads to thwart cross-thread substitution attacks.

2.4.4 Sensitive Register Spilling Protection. Sensitive data
might be spilled to memory in plaintext due to 1) the lack of physical
registers and 2) function calls. Therefore, to achieve comprehensive
protection, RegVault must handle these spillings securely.
Identifying Sensitive Registers: The annotated sensitive data must
be decrypted or encrypted whenever it enters or leaves registers.
Therefore, RegVault marks the following registers as sensitive: 1)
the plaintext registers in RegVault cryptographic operations and 2)
the registers propagated from or to other sensitive registers.
Intra-procedural Spilling Protection: RegVault increases the cost
of sensitive register spilling so that they are less likely to be spilled.
And if a sensitive register has to be spilled, RegVault inserts crypto-
graphic primitives around the store and reload instructions.
Inter-procedural Spilling Protection: To protect spilling during
function calls, RegVault proposes a novel cross-call spilling protec-
tion. For sensitive caller-saved registers, i.e., spilled by the caller,
RegVault identifies their spilling and inserts cryptographic primitives
to protect them. For sensitive callee-saved registers at call-sites, i.e.,
spilled by the callee, RegVault inserts cryptographic primitives to
ensure they are encrypted when entering the callee.

3 REGVAULT APPLICATION
RegVault protects kernel control data and non-control data. The
protected data types are summarized in Table 2. The control data
includes the return addresses and function pointers. For the non-
control data, without loss of generality, we apply RegVault to protect
encryption keys, the user credentials, security feature switches and
memory management data. With the annotation support, RegVault
can be used to protect more kernel data easily.

3.1 Control Data
3.1.1 Return Address. RegVault inserts creak ra, ra[7:0],

sp into the prologue to encrypt the return address, and crdak ra,

ra, sp, [7:0] into the epilogue to decrypt the return address. The
stack pointer sp is used as the tweak to diversify the randomization.
Moreover, RegVault adds a per thread key field to the thread_info,
which is initialized at thread forking, encrypted by the master key in
memory and written to key register on context switches. Therefore,
each thread’s return addresses are encrypted with a unique key.

3.1.2 Function Pointer. RegVault detects the function pointer
usages and inserts the encryption and decryption instructions auto-
matically. The instrument code is similar to the one in Figure 2a.

RegVault uses a dedicated key to randomize kernel function point-
ers only. Moreover, the storage addresses are used as the tweaks to
diversify the randomization. To identify function pointers, RegVault
adopts an over-approximate approach by identifying the function
pointer type and regarding all void * pointers as function pointers.

3.2 Non-control Data
3.2.1 Kernel Keys. Linux kernel provides kernel keyrings to store
cryptographic keys. Unfortunately, these keys are stored as the plain
text and are vulnerable to memory disclosures. We use RegVault
cryptographic primitives to protect their confidentiality. RegVault
ensures that cryptographic keys are always encrypted in memory.
To achieve this, during key setup phases, RegVault encrypts these
keys before storing them. After that, in encryption and decryption
functions, RegVault inserts decryption instructions immediately after
loading the keys. As a proof of concept, we apply RegVault to the
AES engine in Linux kernel crypto subsystem and RegVault suc-
cessfully prevents AES key disclosure attacks, as detailed in §4.3.1.

3.2.2 User Credentials. The attacker often corrupts the uid/gid
fields of cred struct to escalate their privileges [21]. To defeat these
attacks, RegVault randomizes uid/gid with integrity protection, as
discussed in §2.4.2.

3.2.3 Security Feature Switches. Linux security features usu-
ally use kernel variables to control their behaviors. For example,
the selinux_enforcing and ss_initialized control the on/off
of SELinux. Unfortunately, researchers have demonstrated attacks
that overwrite these variables to disable SELinux [22]. In recent
Linux kernel, these variables are gathered in a global struct named
selinux_state. However, the code logic remains the same, leav-
ing the same weak spot. To make SELinux more robust against vul-
nerabilities, RegVault randomizes all fields inside selinux_state
(except the lock fields) with integrity protection.

3.2.4 PGD Pointers. Page tables are critical kernel data that man-
age memory access permissions. Unfortunately, they are globally
writable in the kernel space, allowing the attacker to disable memory
protection [15]. Therefore, RegVault proposes to randomize every
PGD pointer to hide page table locations. RegVault instruments all
loads and stores of PGD pointers, by annotating the pgd_t type.
To defeat substitution, RegVault uses the storage addresses of PGD
pointers as the tweaks to diversify the randomization. Moreover, to
prevent the attacker from locating page tables allocated statically,
RegVault re-allocates these page tables and page table entries, and
updates all their references.

4 IMPLEMENTATION AND EVALUATION
In this section, we present the implementation of RegVault along
with its security analysis and performance evaluation.

4.1 Implementation
We implement the QARMA-based crypto-engine and the decoding
unit for cryptographic instructions with about 820 lines of code
changes in Chisel for Rocket core. For the software support, we
apply RegVault to Linux kernel v5.8.18 with 750 lines of code
changes. RegVault also extends Clang/LLVM 11 with about 4000
lines of code changes.
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Figure 5: Micro-benchmark and macro-benchmark performance.

Table 3: RegVault relative hardware resource cost over the en-
tire SoC, compared with FPU.

RegVault
CLB
Num

Crypto-Engine
%

CLB
%

FPU
%

0
#LUT 4.88 N/A 25.28
#FF 4.79 N/A 12.40

8
#LUT 4.42 4.30 24.39
#FF 4.55 4.84 11.78

Table 4: Penetration test results. RegVault stops all attacks.

Attacks
Defenses

Original RegVault

❶Return-Oriented Programming ✗ ✓

❷Jump-Oriented Programming ✗ ✓

❸Sensitive Data Corruption ✗ ✓

❹Sensitive Data Leak ✗ ✓

❺Privilege Escalation ✗ ✓

❻SELinux Bypass[22] ✗ ✓

❼Interrupt Context Corruption ✗ ✓

❽Spatial Code Pointer Substitution ✗ ✓

4.2 Hardware Evaluation
We implement the RegVault prototype with 8 CLB entries on a
Xilinx Virtex-7 VC707 board with 1GB DDR3 memory running
on 100 MHz. Our implementation of the crypto-engine completes
the QARMA cipher in 3 cycles and does not fall into any timing
critical path. We evaluate the relative FPGA hardware resources
utilized by RegVault with different numbers of CLB entries, such
as the look-up tables (LUTs) and the flip-flops (FFs). The results
are shown in Table 3. Both RegVault crypto-engine and CLB have
low hardware resource cost (<5% over the SoC). Compared to the
floating-point unit (FPU), RegVault consumes a relative low portion
of hardware resources.

4.3 Security Analysis
To evaluate the security of RegVault thoroughly, we first perform
penetration tests on RegVault using real-world attacks, and then
discuss a RegVault specific attack.

4.3.1 Penetration tests. We port the RIPE attack suite [23] to
the RISC-V Linux kernel, and simulate ❶ROP, ❷JOP, ❸sensitive
data corruption attacks, and ❹sensitive data disclosure attacks. Be-
sides, we also develop real-world attacks against RegVault, including

❺privilege escalation by corrupting cred.uid, ❻SELinux bypass
by corrupting selinux_state.initialized [22], ❼interrupt con-
text corruption by tampering a register saved in interrupt context,
and ❽spatial code pointer substitution by replacing an encrypted
function pointer by another in a different address.

As shown in Table 4, RegVault can defeat all of the above attacks.
More specifically, the 64-bit randomization makes unauthorized
writes unpredictable (defeating ❶,❷,❸) and prevents data leak (de-
feating ❹). The integrity protection blocks general data corruption
(defeating ❺,❻). And the address-based randomization thwarts spa-
tial substitution attacks (defeating ❽). Moreover, interrupt context
corruption is detected by our chain-based interrupt context protection
(defeating ❼). Therefore, RegVault is capable of stopping state-of-
the-art attacks on protected sensitive data.

4.3.2 Time-of-derandomize-to-time-of-use attack. In RegVault,
the data de-randomization and the use are not in an atomic instruc-
tion, giving the attacker chances to exploit the gap and corrupt or leak
sensitive data. To address this problem, we propose to randomize
the interrupt context with integrity protection, as detailed in §2.4.3.
As a result, the confidentiality and the integrity of interrupt context
are protected by RegVault, defeating any attempts to leak or corrupt
sensitive data.

4.4 Performance Evaluation
4.4.1 CLB Performance. We collect the run-time information
when running UnixBench, and calculate hit ratios under different
numbers of CLB entries. The result shows that a CLB with only
8 entries can achieve 51.7% hit ratio, indicating most decryption
instructions can find the corresponding plaintext result from the
CLB directly. The results from the UnixBench show that the CLB
decreases the full protection overhead by 1.9%, from 4.5% to 2.6%.
4.4.2 Micro-benchmark Performance. We select UnixBench
and LMbench for micro-evaluation. As shown in Table 2, we test
the performance overhead with four protection configurations: pro-
tecting return addresses only (RA), protecting function pointers only
(FP), protecting four types of non-control data (NON-CONTROL),
and full protection including all of the above data (FULL). The full
protection also includes the interrupt context and register spilling
protection. As shown in Figure 5a and 5b, enabling all protection,
RegVault achieves a 2.6% overhead for UnixBench, and a 2.5% over-
head for LMbench. As these micro-benchmarks are syscall-oriented,
their results provide upper bounds of performance overhead for
userspace programs.



4.4.3 Macro-benchmark Performance. We use the intspeed
test suite of SPEC CPU2017 as the macro-benchmark. As shown
in Figure 5c, the performance overhead is a close-to-zero for the full
protection, indicating that RegVault has the minimal performance
impact on common userspace programs.

5 RELATED WORK
Data Space Randomization (DSR). Data space randomization [6]
leverages pointer analysis to partition the data into different equiv-
alence classes, and assigns a random XOR mask to each class. To
protect the secret XOR masks, HARD [5] achieves context-aware
data partition and stores the masks in a protected memory key ta-
ble. Moreover, CoDaRR [19] further proposes to re-randomize the
masks periodically. Nevertheless, all of these works suffer memory
disclosures, due to the weak XOR-based encryption.
Selective Data Protection. For code pointer protection, CPI [11] al-
locates an isolated safe memory region for code pointers and all data
pointers used to access code pointers. CCFI [14] uses AES-NI in-
structions to generate message authentication codes (MACs) for code
pointers, and verifies their integrity based on the MACs. For general
selective data confidentiality protection, Palit et al. leverage static
analysis to track sensitive data flow and insert AES operations to
keep selected sensitive data encrypted in memory [16]. DynPTA [17]
further combines static analysis with dynamic data flow tracing to
reduce the performance overhead. However, both of them incur high
runtime overhead (more than 10%). Compared to them, RegVault
protects the confidentiality and integrity for both code pointers and
general data, with a minimal performance overhead.
Hardware Cryptographic Primitives. Researchers have developed
various lightweight ciphers optimized for performance in hardware
implementations. Traditional block ciphers like Simon [3] do not
accept an extra input. Therefore, they suffer substitution attacks and
cannot enforce strong integrity. Other lightweight tweakable block
ciphers, like CRAFT [4], are compatible with RegVault architecture.
RegVault can provide similar security guarantee based on these ci-
phers. Standalone cryptographic processors like Cryptoraptor [20]
support a wide range of cryptographic algorithms with high through-
put. But the high communication latency between cryptographic
processors and CPU makes them unsuitable for selective register-
grained data protection. Morpheus [10] is a hardware randomization
architecture. But it adds context information to encryption using
weak XOR instead of the tweak and does not safeguard general data.

ARMv8.3 introduces Pointer Authentication (PA) [18], which is
a hardware-assisted mechanism to sign and authenticate pointers.
Leveraging PA, researchers have developed context sensitive pro-
tection on pointers [9, 12, 13]. Nevertheless, ARM PA is designed
for enforcing integrity, and thus cannot provide confidentiality pro-
tection for general data. In contrast, RegVault hardware primitives
introduce flexible range selection, which can achieve both the confi-
dentiality and the integrity protection.

6 CONCLUSION
This paper presents RegVault, a hardware-assisted selective data
randomization scheme for OS kernels. RegVault leverages new hard-
ware primitives to protect both the confidentiality and integrity of
register-grained data. RegVault uses annotations to mark sensitive

data and instruments their loads and stores automatically. We imple-
ment a prototype of RegVault by extending RISC-V architecture to
protect six types of kernel sensitive data. The evaluations show that
RegVault can defend against the kernel data attacks effectively with
a minimal performance overhead.
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