
When Program Analysis Meets Mobile Security: An Industrial
Study of Misusing Android Internet Sockets

Wenqi Bu
East China Normal University, China

buwenqi@gmail.com

Minhui Xue
New York University Shanghai

East China Normal University, China
minhuixue@nyu.edu

Lihua Xu
East China Normal University, China

lhxu@cs.ecnu.edu.cn

Yajin Zhou
China

yajin@vm-kernel.org

Zhushou Tang
Pwnzen Infotech Inc., China
ellison.tang@gmail.com

Tao Xie
University of Illinois at
Urbana-Champaign, USA

taoxie@illinois.edu

ABSTRACT

Despite recent progress in program analysis techniques to identify

vulnerabilities in Android apps, significant challenges still remain

for applying these techniques to large-scale industrial environ-

ments. Modern software-security providers, such as Qihoo 360 and

Pwnzen (two leading companies in China), are often required to

process more than 10 million mobile apps at each run. In this work,

we focus on effectively and efficiently identifying vulnerable usage

of Internet sockets in an industrial setting. To achieve this goal, we

propose a practical hybrid approach that enables lightweight yet

precise detection in the industrial setting. In particular, we integrate

the process of categorizing potential vulnerable apps with analysis

techniques, to reduce the inevitable human inspection effort. We

categorize potential vulnerable apps based on characteristics of

vulnerability signatures, to reduce the burden on static analysis.

We flexibly integrate static and dynamic analyses for apps in each

identified family, to refine the family signatures and hence target

on precise detection. We implement our approach in a practical sys-

tem and deploy the system on the Pwnzen platform. By using the

system, we identify and report potential vulnerabilities of 24 vulner-

able apps (falling into 3 vulnerability families) to their developers,

and some of these reported vulnerabilities are previously unknown.

The apps of each vulnerability family in total have over 50 mil-

lion downloads. We also propose countermeasures and highlight

promising directions for technology transfer.

CCS CONCEPTS

• Security and privacy → Vulnerability scanners; Software

and application security;

KEYWORDS

Android security; Internet sockets; Vulnerability analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3117764

ACM Reference format:

Wenqi Bu, Minhui Xue, Lihua Xu, Yajin Zhou, Zhushou Tang, and Tao

Xie. 2017. When Program Analysis Meets Mobile Security: An Industrial

Study of Misusing Android Internet Sockets. In Proceedings of 2017 11th

Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering, Paderborn,

Germany, September 4–8, 2017 (ESEC/FSE’17), 6 pages.

https://doi.org/10.1145/3106237.3117764

1 INTRODUCTION

Mobile apps and their users have witnessed a massive growth over

the last decade. As such, the security and privacy concerns are

increasingly becoming the focus of great concern to various stake-

holders. Program analysis, through its extensive applications on

Android platforms [4, 7, 9–13], has demonstrated great potential in

vulnerability disclosure. Despite sophisticated, static analysis ex-

plores the app behavior for all possible execution paths. In Android

apps, static analysis usually requires to construct various depen-

dency graphs from multiple entry points, elongating the process

time with respect to graph construction and exploration.

Transferring academic research on vulnerability detection to an

industrial setting requires significant adaption to account for prac-

tical realities of scale and cost. Modern software-security providers,

such as Qihoo 360 and Pwnzen (two leading companies in China),

are often required to process more than 10 million mobile apps

at each run, for detecting potential vulnerabilities. Regardless of

the number of Android apps in the target industrial environment,

some of these apps are even too complex to analyze in its entirety.

Furthermore, in security industry, it is inevitable to engage hu-

man inspections, e.g., toward constructing vulnerability exploits to

confirm the identified potential vulnerabilities.

To address such challenges in industrial environments, we present

a novel approach for vulnerability detection. The goal of our work

is to enable practical identification of vulnerable Internet-socket

usage pertinent to a large-scale industrial setting. Our insights are

three-fold. (1) Vulnerabilities, even all of those related to Internet

sockets, typically carry different characteristics, and thus we should

not unify strategies for analyzing different mobile apps as tradi-

tional analysis approaches did. (2) Mobile apps related to the same

type of Internet socket usage tend to preserve similar features (e.g.,

class names and permissions) introduced by the same SDK or li-

brary (used by the apps). (3) Typical static analysis techniques seek



ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Wenqi Bu, Minhui Xue, Lihua Xu, Yajin Zhou, Zhushou Tang, and Tao Xie

to analyze an app in its entirety; doing so is not only challenging

given the nature of Android apps, but also time consuming.

To cope with the large number of apps to be processed in an

industrial setting, we design a lightweight detection process to

specifically avoid statically analyzing every app in the environment.

Specifically, we leverage features to characterize similar usage pat-

terns of apps and categorize them accordingly. Before sophisticated

program analysis is applied, the whole set of apps are filtered, and

only potentially vulnerable apps require further analysis.

To tackle with the complexity of some real-world apps, we in-

tegrate dynamic analysis with static analysis to identify vulnera-

ble apps. One of our observations is that a typical vulnerable app

opens a port by default at launch time. By dynamically observing

the server socket instantiation, our approach is able to avoid tra-

ditional static analysis for reachability [10, 12], which identifies

socket instantiation from all entry points of the app. Exploring all

the possibly reachable paths from all entry points of an app would

undoubtedly elongate the analysis process, sometimes even not

realistic in an industrial setting.

Despite effective, our lightweight process may bring false posi-

tives to the detection result. To account for such false positives, we

leverage human inspectors, whose efforts are inevitable in security

industry. With our filtering and analysis techniques, the number of

potential vulnerable apps that need examining by human inspec-

tors is greatly reduced. Hence it is easier to identify the root causes

of certain vulnerabilities, which, in our observation, are typically

introduced by SDK or third-party libraries. Through examining the

vulnerability families, an enriched set of features can be identified,

and hence substantially boost the chances of identifying vulnerable

apps.

We implement our iterative approach in a practical system and

deploy the system on Pwnzen’s automation mobile security plat-

form, Janus [5]. The approach takes three main iterative steps,

including human inspectors in the loop: Filter, Analyzer, and Fea-

ture Extractor. Our approach seeks to identify new vulnerabilities

and categorizes potential vulnerability families with correspond-

ing features. Features from every family are further refined and

enriched for the next iteration to identify more vulnerabilities. To

date, our filter is specifically designed for vulnerabilities related

to Internet sockets, but the approach can be well generalized for

detecting other types of vulnerabilities.

In summary, the paper makes the following main contributions:

• Wediscussmain challenges encountered and insights gained

from vulnerability identification in an industrial setting.

• We propose a hybrid approach that integrates novel static

and dynamic analyses to identify vulnerabilities based on

Internet sockets in a large-scale industrial environment.

Compared with prior work [10], our approach can identify

vulnerabilities based on Internet sockets precisely with

limited human effort. Based on the Janus platform with

categorization, we can quickly identify vulnerable apps

belonging to the same family and fix them promptly.

• For our initial experiment, we identify 24 vulnerable apps

falling into 3 vulnerability families (the QQ family, Huya

family, and ES family). The apps of each vulnerability fam-

ily in total have over 50 million downloads.

Root IdentificationPatterns Feature Extractor
Features

Janus Family BFamily A 

Analyzer Potentially 
vulnerable 

apps

Filter

API Filter

Pattern Matcher

Dangerous Execution 
Path Detector

Dynamic AnalyzerApps

vulnerable

benign

Figure 1: Overview of our approach

• We offer three lessons learned from our study. We also

discuss countermeasures to prevent vulnerabilities based

on Internet sockets.

2 OUR APPROACH

In this section, we propose a general approach to examine the use

of Internet sockets of apps, and attempt to identify what apps are

most likely vulnerable for validation. Figure 1 shows an overview of

our approach, which contains three main steps: Filter, Analyzer,

and Feature Extractor. The Filter, which contains two sub-steps:

Pattern Matcher and API Filter, filters out irrelevant apps that are

less likely to use Internet socket APIs; the Analyzer integrates dy-

namic analysis (Dynamic Analyzer) with static analysis (Dangerous

Execution Path Detector), to further identify potentially vulnerable

apps; the Feature Extractor extracts signature patterns for each

identified vulnerability family, after manual root identification. The

basic steps of our approach are detailed as follows.

Step 1. Filter. Step 1 filters out apps that do not match the identified

patterns. To date, our filter is specifically designed for vulnerabilities

related to Internet sockets. Hence, we start with the wormhole

pattern [1], and also filter out the apps that do not use Internet

socket APIs.

(a) Pattern Matcher. We first filter out apps that do not preserve

the defined patterns. A pattern consists of different features, each of

which represents an identified signature of specific vulnerabilities.

A feature can represent either a class name, a string constant, a

third library name and so on. The features are combined via and, or

conjunctions as logic expressions to construct a pattern, which is

then be processed over the database. The output of Pattern Matcher

is a subset of apps, which are to be further filtered by API Filter.

(b) API Filter. At this step, we check whether an app requests

permissions to use certain APIs and whether it actually uses the

requested APIs. Take Internet socket APIs as an example. We check,

at this stage, (1) whether remaining apps have INTERNET permis-

sions. Apps without this permission are certainly not vulnerable

because using Internet sockets on Android apps must require the

INTERNET permission. We also check (2) whether these apps use

Internet socket APIs to start server sockets. It is our observation

that the usage of Internet socket APIs on the server side makes an

app particularly vulnerable, because server sockets can arbitrarily

accept random connection requests from client sockets. It is worth

noting that our approach does not take client sockets into consid-

eration, because a client socket is required to pinpoint a socket

address that it connects to and then establishes the connection

channel between a server socket associated with the designated

socket address.

Moreover, rather than focusing on only the main dex file of an

app, our detection extends to all jar/dex files that can be dynamically



When Program Analysis Meets Mobile Security:

An Industrial Study of Misusing Android Internet Sockets ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

loaded in its assets directory. The reasons are two-fold. (1) Travers-

ing all jar/dex files that can be dynamically loaded can quickly filter

out apps that are definitely not vulnerable, but this coarse-grained

filtering would introduce some false alarms. (2) Only the assets

directory can contain jar/dex files according to the asset-packaging

process in Android.

Specifically, our API Filter is implemented upon Androguard [4].

After pattern matching, the AndroidManifest.xml of each remaining

app is extracted and checked for the INTERNET permission. We scan

the main dex with two Dalvik instructions: Ljava/net/ServerSocket;-

><init> and Ljava/net/DatagramSocket;-><init> to check whether

it has the INTERNET permission. These two instructions represent

the initialization of TCP and UDP server sockets, respectively. As

mentioned earlier, the jar/dex files in the assets directory are also

scanned. As a result, the Filter returns an app list in which apps

use Internet sockets.

Step 2. Analyzer. Step 2 aims to identify apps that start server

sockets at launch time and contain dangerous execution paths from

the client socket connection. The outputs are potentially vulnerable

apps with information of dangerous execution paths.

(a) Dynamic Analyzer. We conduct dynamic analysis to identify

apps that start server sockets at launch time. Each app is installed

and launched automatically, with its server-socket information col-

lected. The server-socket information consists of the type of server

socket and the socket address. We use the Xposed1 framework to

intercept server socket get-client-socket method and record its

call location, which is then passed onto the Dangerous Execution

Path Detector.

As mentioned earlier, we rely on only dynamic analysis to find

potentially vulnerable server sockets of apps, for two reasons. (1) It

is our observation that vulnerabilities based on server sockets that

start listening at launch time have realistic significance, because

an attacker is able to exploit these vulnerabilities within adequate

time. If starting a server socket needs user interactions, we do not

consider it vulnerable because such socket starting can be a normal

functionality, e.g., clicking to start a server socket to transfer a file to

a computer. (2) Static analysis techniques have inherent limitations

such as handling reflection and implicit invocation, as well as high

time consumption.

(b) Dangerous Execution Path Detector. The Dangerous Execu-

tion Path Detector aims to check whether data accepted from client

sockets can be used to invoke sensitive APIs, which are usually used

to extract sensitive information or execute privileged commands.

By leveraging a compound list of sensitive APIs [4, 7, 8], we use the

get-client-socketmethod to create an entry point and build the

inter-procedural data flow graph (IDFG). If there exists an execution

path that travels from the entry point to a sensitive-API invocation,

there is a high probability for data accepted from client sockets to

trigger dangerous executions. The identified execution path with

various authentication mechanisms serves as a prerequisite for

manual exploitation.

Specifically, we implement the Dynamic Analyzer and Danger-

ous Execution Path Detector on top of Xposed and Amandroid [13].

Amandroid is a cutting-edge Android static analysis tool, which pro-

vides points-to information for all objects. We leverage Amandroid

1http://repo.xposed.info/

to construct the IDFG from apps’ non-native part for performing

app-layer analysis. The Xposed framework can record informa-

tion of definite method invocations at runtime, and we use it to

record call locations of the get-client-socket method of the

server socket API.

In particular, we take as input potentially vulnerable apps af-

ter applying Step 1 Filter. First, we take the input apps as a set

A. For each app ∈ A, we write a Python script to automatically

install and launch each app, and collect information of server-

socket address sadd ∈ Sadd, where Sadd is a socket-address set.

We use fsocket to represent a getSocketAddress function, that is,

sadd ← fsocket(app), for all apps ∈ A. We utilize the Xposed frame-

work to fetch locations when the server socket invokes the ac-

cept() or receive() method. We use client socket-connection loca-

tion information rentry ∈ Rentry as an entry point to construct

the IDFG, where Rentry is an entry point set for all server sock-

ets with multiple socket addresses. We use fentry to represent a

getEntryPoint function, that is, rentry ← fentry(app, sadd), for all
apps ∈ A, sadd ∈ Sadd. If rentry is not null, we then initialize a

result for each node rentry ∈ Rentry. Particularly, a result consists

of four parts: (1) a string apkname aapk that represents an app’s

name; (2) a boolean flag bvul that forms a binary judgment of an

app’s vulnerability (bvul = 1, it’s vulnerable; otherwise); (3) a string

SocketAddress sadd that shows an Internet server-socket address;

(4) a dangerous-paths set D that shows dangerous execution paths.

At the final step, we take each entry point rentry ∈ Rentry to con-

struct the IDFG if it is not null. The find-path function fpath takes

in an entry point rentry to identify all paths ppath ∈ D invoking

the sensitive API files sapi. If there exists at least one path invoking

the sensitive APIs, we label the app as vulnerable. We repeat this

process until all the input apps are analyzed. We summarize the

implementation in Algorithm 1.

ALGORITHM 1: Implementation of Step 2

Input: A: Apps using Internet socket APIs
Output: results: Vulnerable apps with dangerous execution path information
1: for app ∈ A do
2: sadd ← fsocket(app)
3: rentry ← fentry(app, sadd)
4: for rentry ∈ Rentry do
5: if rentry � null then
6: Build IDFG for app from rentry
7: ppath ← fpath(rentry, sapi).
8: if # ppath > 0 then
9: bvul = 1.
10: end if
11: (results+ = aapk, bvul, sadd, ppath)
12: end if
13: end for
14: end for
15: return results

Step 3. Feature Extractor.We understand that human inspection

effort is inevitable in software-security industry. To better serve

the inspectors, we leverage information of dangerous execution

paths to guide manual exploitation to construct malicious client

sockets. Furthermore, such information also helps understand the

root causes of these vulnerabilities, such as exposing a function

with weak authentication, importing a third-party library with-

out evaluating its security, having back doors for collecting user

information, and so on.



ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Wenqi Bu, Minhui Xue, Lihua Xu, Yajin Zhou, Zhushou Tang, and Tao Xie

Table 1: Apps using Internet sockets from two Android app

markets
# Apps using Internet # TCP Internet # UDP Internet

socket APIs sockets sockets
Tencent Market 361 352 361
Google Play Store 176 228 125

Total 537 589 477
Percentage 36.7% 55.3% 44.7%

After reasoning about these vulnerabilities, we categorize vul-

nerable apps to different families according to different root causes.

Then we extract different feature groups and have them installed

to Janus [5] as different patterns. These patterns are used in the

Pattern Matcher of Step 1. In summary, after an initial iteration, we

obtain new vulnerable apps and new patterns. These new patterns

represent root causes of these vulnerability families. When the next

iteration starts, one of these patterns serves to be an input to the

Pattern Matcher of Step 1. Another input is apps that are in need of

analysis. The Pattern Matcher feeds all apps that match the pattern

as input to the API Filter. Through the Filter, Analyzer, and Root

Identification steps, we can further add new vulnerable apps and

new patterns to the new iteration. The iteration for a pattern input

stops until we cannot identify new vulnerable apps.

3 RESULTS

3.1 Usage of Server Internet Socket APIs

We evaluate our system on the 1, 464 top downloaded apps crawled

from two Android app markets, the Tencent Android Application

Market2 and Google Play Store, of which 840 (resp. 624) apps

crawled from the Tencent AndroidApplicationMarket (resp. Google

Play Store) are classified into 21 (resp. 32) categories. Table 1 shows

the usage of server sockets of these Android apps. Note that an app

can use multiple Internet sockets. Figures 2 and 3 show the server

socket usage in different categories, as shown in decreasing order

in terms of the number of socket APIs with respect to different cat-

egories. Each category of the Tencent Android Application Market

(resp. Google Play Store) has 40 (resp. 20) top apps, except that the

finance category of Google Play Store has only 6 top apps due to

the market ecosystem. As shown in Figure 2, the top 5 categories,

which take up more than 50% apps, are children, video, music, en-

tertainment, and tools. As shown in Figure 3, the top 6 categories

of Google Play Store, which take up more than 50% apps, are video,

productivity, photography, lifestyle, sports, and music and audio.

3.2 Performance Evaluation

As mentioned earlier, static analysis seeks to analyze each app in

its entirety, which is a time-consuming task. Take Amandroid [13]

as an example, building the IDFG for most apps can take anywhere

from 10s to 1000s each, with a median process time of 29s. It may

even take more than 1 hour for each of some complex apps. It is

unacceptable in our environment, given the Janus database con-

taining more than 11 million apps. To alleviate the analysis burden,

we filter out the irrelevant apps before entering the analysis phase,

so that both the total analysis time for the Janus database and the

number of apps required to be analyzed are tremendously reduced.

In our experiment, we are able to filter the Janus database within

2http://android.myapp.com/

Table 2: Breakdowns of vulnerability families

Family # Features Efficiency
# Remaining

apps
Infected apps

QQ family 2
57s for

11 million+
223 QQBrowser and QQHotspot

Huya family 2
14s for

11 million+
380 HuyaLive and HuyaHelper

ES family 3
3s for

11 million+
707 ES-File-Explorer

Table 3: Performance details

Filter
Dynamic
analysis

Dangerous exec.
path detection

Root identification
& Feature extractor

# Tencent Market
remaining apps

361 75 24 20

# Google Play Store
remaining apps

176 17 10 4

# Total remaining apps 537 92 34 24

1 minute. Specifically, as shown in column Efficiency in Table 2,

depending on different features defined in each pattern, the filtering

process time ranges from 3s to 57s. As filtering results, only a few

hundreds of apps remain for further analysis, as shown in column

# remaining apps in Table 2. Table 2 shows three families for the

vulnerabilities that we mine out from the database. Take the QQ

family as an example. We extract 2 features as a pattern to conduct

the filtering process, which takes 57 seconds and results in 223

suspicious apps of the QQ family. Some of these suspicious apps

are multiple versions of the same app. After manual exploitation,

we confirm two vulnerable apps of the QQ family: QQBrowser and

QQHotspot (see more details in Table 2).

To further evaluate our approach, again we use the top down-

loaded apps from two existing app stores (Table 1), and report the

detailed analysis results in Table 3. After the filtering step, 537 possi-

ble vulnerable apps out of 1, 464 apps remain to be further analyzed.

We then pass 537 apps to the Dynamic Analyzer and Dangerous

Execution Path Detector. Although Dangerous Execution Path De-

tection is the most time-consuming intermediate step, we think it

is indispensable. A decrease in the number of apps to be analyzed

can boost the overall efficiency, as reflected by recent research that

takes median process time 61.5s to identify dangerous execution

paths [10]. Finally, we pass 34 apps (remaining after the steps of

Dynamic Analysis and Dangerous Execution Path Detection) to

Root Identification, and manually confirm in total 24 vulnerable

apps in the end. These vulnerable apps expose sensitive API invo-

cations without any authentication (or with weak authentication)

and can be exploited by any remote attackers, such as requesting

sensitive information and installing random apps.

3.3 Case Study

Next, we zoom in on the severe zero-day vulnerabilities pertinent

to Internet sockets, and these vulnerabilities are included in pop-

ular apps installed by thousands of millions of users. Because of

weak authentication mechanisms, an attacker can remotely exploit

those vulnerabilities to (1) install arbitrary apps on target devices,

(2) upload random files on target devices, (3) obtain all files and

sensitive information from target devices.

3.3.1 Wormable QQBrowser: QQ family. QQBrowser is a

major mobile app of Tencent, with up to 281 million monthly active

users and more than 600 million downloads on the Tencent Android

Application Market [3]. Other than its main browser functionalities,

QQBrowser also offers reading, shopping, etc. In order to reuse



When Program Analysis Meets Mobile Security:

An Industrial Study of Misusing Android Internet Sockets ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

27 26 24
20 20 19 19 19 18 17 17 17 16 16 15 15 13 13 12 10 8

0

10

20

30

40

# 
of

 A
pp

s U
sin

g 
In

te
rn

et
 

So
ck

et
 A

PI
s 

Figure 2: Usage of server Internet socket APIs from Tencent Android Application Market

12 11 10 10 10 10 9 9 9 8 8 7 7 7 6 6 6 5 5 5 4 4 4 4 4 4 3 3 3 2 2 1
0

5

10

15

20

# 
of

 A
pp

s U
sin

g 
In

te
rn

et
 

So
ck

et
 A

PI
s

Figure 3: Usage of server Internet socket APIs from Google Play Store

some app modules and reduce the coupling dependency between

different modules, QQBrowser separates different app modules

from its browser. Each app module is encapsulated in a single dex

file, which is packaged in the apk assets folder. QQBrowser uses a

dynamic loading method to load different app models.

The QQBrowser vulnerability that we identify resides in the

application module, used for transferring files from desktop com-

puters to mobile devices through LAN. The vulnerable location is

encapsulated in a dex file “com.tencent.mtt.sniffer.jar” under the

assets folder. When devices connect to Wi-Fi, the QQBrowser will

start a server socket to listen on the wildcard address 0.0.0.0 and

port 8786. The QQBrowser vulnerability uses a certain HTTP data

structure to transfer data to pass through the weak authentication.

Only data accepted from client sockets associated with a certain

structure can trigger sensitive API invocations. For example, a re-

quest method post and a request path downloadandinstall will allow

an attacker to remotely have malicious apps installed. Other vul-

nerability exploits such as obtaining installed app records, peeking

location privacy information (IP addresses), and having elaborate

files uploaded to the target device SD card for performing colluding

attacks can also be obtained. When the target and the attacker are

not on the same Wi-Fi network, the attack can also be launched by

distributing malicious wormable links. QQBrowser versions 6.4-6.9

and QQHotspot versions 1.0-1.2 all suffer from this vulnerability.

We have reported this vulnerability to Tencent, and soon it has been

acknowledged and fixed by Tencent.3 The vulnerability sample has

also been imported to the China National Vulnerability Database

of Information Security, numbered CNNVD-201609-6274 (see more

details [2]).

3.3.2 Arbitrary file access: Huya family. HuyaLive is a very

popular live app in China, with more than 72 million downloads on

3http://bbs.mb.qq.com/thread-1418941-1-1.html
4http://www.cnnvd.org.cn/web/xxk/ldxqById.tag?CNNVD=CNNVD-201609-627

the Tencent Android Application Market.5 After launching the app,

we find that the app starts two TCP server sockets that can be re-

motely connected. These two server sockets listen on the wildcard

address and ports 8082 and 8083. To simplify description, we term

these two server sockets as Server8082 and Server8083, respectively.

Both server sockets are implemented based on an open-source web

server, NanoHTTPD [6]. NanoHTTPD consists of a single Java file

used to embed in apps. After passing through the Dangerous Exe-

cution Path Detector, we identify many sensitive API invocations,

such as a File object’s list method used for listing all files under a

directory and a PrintWriter object’s print method used for sending

data back to client sockets. Through manual analysis, we find that

both Server8082 and Server8083 are able to return HTML pages with

little authentication. A remote attacker can access arbitrary files

from victim phones through Server8082. The only authentication

is the request path that can extract from the former HTML page.

Server8083 is designed for debugging, exposing some functionali-

ties to allow app developers to invoke remote client sockets. These

functionalities include causing garbage collection, watching live

CPU usage, and triggering an exception to shut down an app, by

which a remote attacker can launch DoS attacks. Two apps in the

Huya Family (Huyalive and HuyaHelper) contain this vulnerability.

3.3.3 Random uploading: ES family. ES-File-Explorer is a

very popular file management app, with more than 300 million

downloads.6 Besides basic functionalities of file management, ES-

File-Explorer also provides file classification, garbage cleaning, file

transfer between or across devices. Through our analysis, we find

that ES-File-Explorer starts a server socket listening on the wild-

card address and port 42135 when being launched. Through the

Dangerous Execution Path Detector, we find a path for invoking

getExternalStorageDirectory(), used to reach the SD card directory.

Only data following a certain structure accepted from client sockets

5http://sj.qq.com/myapp/detail.htm?apkName=com.duowan.kiwi
6http://www.estrongs.com/



ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany Wenqi Bu, Minhui Xue, Lihua Xu, Yajin Zhou, Zhushou Tang, and Tao Xie

can trigger sensitive API invocations. We also identify that ES-File-

Explorer customizes a protocol termed “MYPOST ” similar to HTTP,

and uses constructed data associated with the data structure to

upload random files to target mobile devices. In fact, the vulnera-

bility, existing in a component model QuickTransfer, is exploited

to transfer data between different devices. The privileged compo-

nent can be exposed to a remote attacker after launching the app

through Internet socket channels, allowing the attacker to exploit

the vulnerability to upload malicious apps for performing colluding

attacks.

4 DISCUSSION

In this industrial study, we demonstrate that our proposed approach

is largely effective and efficient. However, we also identify our

approach’s limitations as follows in such industrial setting.
• As we implement our current approach based on some off-

the-shelf static analysis tools, our approach is inherently

confined to the capability of these cutting-edge static anal-

ysis tools. Such limitations include handling Java reflection

and dynamic loading.

• Our current approach does not take native code into con-

sideration, but apps can embed the open-port function-

ality into native code for either disguising their stealthy

behavior or performance purposes. Because analysis for

capturing the control-flow jumps from native code to the

Java layer is time consuming, our current approach does

not include such analysis.

• App inspection cannot be fully automatically conducted.

In this paper, we attempt to minimize the human efforts

to examine and identify the root causes of vulnerabilities.

Minimizing human efforts can facilitate technology adop-

tion in practice.

In this industrial study, one of our research goals is to offer

lessons learned from the security implication of Internet sockets.

We list them as follows:

• When importing a third-party library or an internal library,

developers need to do sufficient security testing to prevent

wormable vulnerabilities such as those in QQBrowser.

• Developers need to remove debug code before releasing

their apps. Not promptly removing the debug code can do

great harm to target users, as demonstrated by the case of

HuyaLive, which exposes files on the target mobile device

to a remote attacker.

• The procedure of file sharing on the Wi-Fi network should

be fully aware to users. Any client connections to the server

sockets should also be notified and controlled by users.

As shown in our study, the misuse of Internet sockets on Android

has resulted in many severe vulnerabilities. We discuss two possible

countermeasures to alleviate the problem:

• Using a server Internet socket as an IPC channel should be

bound to the local IP address 127.0.0.1 rather than using the

default wildcard address. Another option is to use Android

Unix domain sockets.

• If server Internet sockets accepting the remote connection

are required, authentication logic should be better allo-

cated to the remote server instead of being embedded in

apps. Another remedy is to display a dialog window with

an alert message to any connection. Furthermore, it would

be more secure if users are allowed to authorize the connec-

tions; indeed how to translate deep security implications

to common users remains important future directions.

5 CONCLUSION

In this paper, we have proposed a hybrid approach to detect vulner-

abilities based on Internet sockets in large-scale industrial environ-

ments. We have integrated categorization with novel dynamic and

static analyses to accelerate analysis of apps. Our approach helps

identify 24 vulnerable apps (falling into 3 vulnerability families).

The apps of each vulnerability family in total have over 50 million

downloads.

As it is exciting to facilitate new industrial findings using real-

world data, our research is the first to deploy a practical system for

vulnerability detection on the state-of-the-practice Janus industrial

platform. We expect that Android app vulnerabilities in the wild

could be particularly amenable to the use of our proposed approach,

and our general methodology can serve as a supplement to other

detection schemes in practice.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science

Foundation of China, under Grants 61502170 and 61673180, in part

by the East China Normal University travel grant, and in part by

the Shanghai Pujiang Program, under Grant 16PJ1430800. The work

was also supported in part by NSF under grants no. CCF-1409423,

CNS-1434582, CNS-1513939, CNS-1564274.

REFERENCES
[1] 2015. Baidu Wormhole Vulnerability. (2015). Retrieved May 10, 2017

from http://blog.trendmicro.com/trendlabs-security-intelligence/setting-the-
record-straight-on-moplus-sdk-and-the-wormhole-vulnerability/

[2] 2016. PANGU Wormable Browser. (2016). Retrieved May 7, 2017 from http:
//blog.pangu.io/wormable-browser/

[3] 2016. QuestMobile Top Chinese Apps Rankings. (2016). Retrieved May 7, 2017
from http://www.questmobile.com.cn/blog/en/blog_64.html

[4] 2017. Androguard. (2017). Retrieved May 7, 2017 from https://github.com/
androguard/androguard

[5] 2017. Janus. (2017). Retrieved May 10, 2017 from http://cloud.appscan.io/
[6] 2017. NanoHTTPD. (2017). Retrieved May 7, 2017 from https://github.com/

NanoHttpd/nanohttpd
[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proc. PLDI. 259–269.

[8] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proc. CCS. 217–228.

[9] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung Gon
Chun, Landon P. Cox, Jaeyeon Jung, Patrick Mcdaniel, and Anmol N. Sheth.
2010. TaintDroid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proc. OSDI. 393–407.

[10] Yunhan Jack Jia, Qi Alfred Chen, Yikai Lin, Chao Kong, and Z. Morley Mao. 2017.
Open Doors for Bob and Mallory: Open Port Usage in Android Apps and Security
Implications. In Proc. EuroS&P.

[11] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. IccTA: Detecting Inter-component Privacy Leaks in Android Apps.
In Proc. ICSE. 280–291.

[12] Yuru Shao, Jason Ott, Yunhan Jack Jia, Zhiyun Qian, and Z Morley Mao. 2016.
The Misuse of Android Unix Domain Sockets and Security Implications. In Proc.
CCS. 80–91.

[13] Fengguo Wei, Sankardas Roy, Xinming Ou, et al. 2014. Amandroid: A Precise and
General Inter-component Data Flow Analysis Framework for Security Vetting
of Android Apps. In Proc. CCS. 1329–1341.


