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ABSTRACT

Emulators are widely used to build dynamic analysis frameworks
due to its fine-grained tracing capability, full system monitoring
functionality, and scalability of running on different operating sys-
tems and architectures. However, whether emulators are consistent
with real devices is unknown. To understand this problem, we aim
to automatically locate inconsistent instructions, which behave
differently between emulators and real devices.

We target theARMarchitecture, which providesmachine-readable
specifications. Based on the specification, we propose a sufficient
test case generator by designing and implementing the first sym-
bolic execution engine for the ARM architecture specification lan-
guage (ASL).We generate 2,774,649 representative instruction streams
and conduct differential testing between four ARM real devices in
different architecture versions (i.e., ARMv5, ARMv6, ARMv7, and
ARMv8) and three state-of-the-art emulators (i.e., QEMU, Unicorn,
and Angr). We locate a huge number of inconsistent instruction
streams (171,858 for QEMU, 223,264 for unicorn, and 120,169 for
Angr). We find that undefined implementation in ARM manual and
bugs of emulators are the major causes of inconsistencies. Further-
more, we discover 12 bugs, which influence commonly used instruc-
tions (e.g., BLX). With the inconsistent instructions, we build three
security applications and demonstrate the capability of these in-
structions on detecting emulators, anti-emulation, and anti-fuzzing.

∗Most of the work was completed when the first author was visiting Zhejiang
University.
†Corresponding author.
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1 INTRODUCTION

A CPU emulator is a powerful tool as it provides fundamental
functionalities (e.g., tracing, record and replay) for the dynamic
analysis. Though hardware-based tracing techniques exist, they
have limitations compared with software emulation. For example,
ARM ETM has a limited Embedded Trace Buffer (ETB). The size
of ETB of the Juno Development Board is 64KB 1 [1]. On the con-
trary, software emulation is capable of tracing the whole program,
provides user-friendly APIs for runtime instrumentation, and is
supported by multiple operating systems and architectures. Nev-
ertheless, software emulation complements the hardware-based
tracing techniques and provides rich functionalities for dynamic
analysis frameworks.

Indeed, many dynamic analysis frameworks [24, 26–29, 31, 32,
34, 36, 37, 40, 41, 45, 50, 61, 66] are built based on the state-of-the-art
CPU emulators (e.g., QEMU [12], Unicorn [17], Angr [3]) to conduct
malware analysis, live-patching, crash analysis and etc. Meanwhile,
many fuzzing tools utilize CPU emulators to fuzz binaries, e.g., the
QEMUmode of AFL [2], Unicornfuzz [51], FirmAFL [67], P2IM [33],
HALucinator [30], and TriforceAFL [15].

The wide adoption of software emulation usually has an im-
plicit assumption that the execution result of an instruction on
1The ETB size of different SoCs may be different. However, it is usually limited due to
the chip cost and size.

https://doi.org/10.1145/3503222.3507736
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the CPU emulator and the real device is identical, thus running
a program on the CPU emulator can reflect the result on the real
hardware. However, whether this assumption really holds in real-
ity is unknown. In fact, the execution result can be different (as
shown in our work), either because the CPU emulator has bugs
or it uses a different implementation strategy from the real device.
These differences impede the reliability of emulator-based dynamic
analysis. For instance, the malware can abuse the differences to
protect the malicious behaviors from being analyzed in the emula-
tor [38, 39, 49, 58].

In this work, we aim to automatically locate inconsistent instruc-
tions, which behave differently between emulators and real devices,
for the ARM architecture. In this paper, instruction denotes the
category in terms of functionality, which is usually represented by
its name in ARM manual. For example, STR (immediate) is an in-
struction, which aims to store a word into memory. Automatically
locating inconsistent instructions is not easy. First, ARM archi-
tecture has multiple versions (e.g., ARMv5, ARMv6, ARMv7, and
ARMv8), different register widths (16 bits or 32 bits) and instruc-
tion sets. Besides, it has mixed instruction modes (ARM, Thumb-1,
and Thumb-2). Thus, how to generate sufficient instruction streams,
which denotes the bytecode of an instruction, to cover these vari-
ants, while at the same time generating only necessary ones to save
the time cost, is the first challenge. Note that if we naively enu-
merate 32-bit instruction streams, the number of test cases would
be 232, which is inefficient to be evaluated. Meanwhile, randomly
generated instruction streams are not representative and many in-
structions are not covered (Section 4.1). Second, for each test case,
we should provide a deterministic environment to execute the sin-
gle instruction stream and automatically compare the result after
the execution. This requires us to set up the same CPU state before
the execution and compare the state afterwards.

Previous works [52–55], which target x86/x64 architectures, pro-
vide valuable insights. However, they either use randomized test
cases or rely on the emulator or hardware to generate the test
cases, which is not sufficient and the results may be biased. Mean-
while, existing designed differential testing frameworks (e.g., Emu-
Fuzzer [55]) require that the emulator should be running inside the
compared real device, which are not scalable. Furthermore, whether
the findings can be applied on the ARM architecture is unknown.
Though recent work (i.e., iDEV [57]) studies the semantic deviation
issue of ARM instructions, they lack a systematic way to generate
sufficient test cases. Instead, they enumerate a huge number of
(i.e., 33 million) redundant test instructions that cannot cover all
the instruction behaviors. Meanwhile, they only focus on the trig-
gered signals during the execution process without checking the
whole CPU state, resulting in many inconsistent instructions unex-
plored. Furthermore, the evaluation is limited to ARMv7 and QEMU.
There are many other ARM architectures (e.g., ARMv5, ARMv6, and
ARMv8) and lightweight but also popular emulators (i.e., Unicorn,
Angr), which many frameworks are based on [25, 37, 51, 64]. We
will discuss the major differences between iDEV and our work in
Section 5.

Our system is able to automatically locate inconsistent instruc-
tions in a systematic mechanism with the following two key in-
sights, which have been neglected by existing works.

Syntax and semantics aware test case generator To generate
representative test cases, we propose a syntax and semantics aware
methodology. Each ARM instruction consists of several instruction
encodings, which describe which parts of the instruction are con-
stant and which parts can be mutated (Fig. 1a). The non-constant
parts are called encoding symbols. Each instruction encoding has
specific decoding and execution logic, which is is expressed in
the ARM’s Architecture Specific Language (ASL) [59] . We call it
ASL code (Fig. 1b and 1c). ASL code executes based on the con-
crete values of the encoding symbols. In this case, we first take
the syntax-aware strategy. For each encoding symbol, we mutate it
based on pre-defined rules. For instance, for the immediate value
symbol, the values in the mutation set cover the maximum value,
the minimum value and a fixed number of random values. This
strategy generates syntactically correct instructions. We further
take a semantics-aware strategy to generate more test cases as the
previous strategy may only cover limited instruction semantics
(Section 2.2). To this end, we extract the constraints, which influ-
ence the execution path, in ASL code. We solve the constraints and
their negations by designing and implementing the first symbolic
execution engine for ASL to find the satisfied values of the encoding
symbols. By doing so, the generated test cases can cover different
semantics of an instruction.
Deterministic differential testing engine Comparing the exe-
cution result of emulators/real devices with the ARM specification
directly relies on a precise ASL interpreter. However, the precision
of the ASL interpreter cannot be guaranteed. In this case, we pro-
pose a differential testing engine, which uses the generated test
cases as inputs. To get a deterministic testing result, we provide the
same context when executing an instruction stream on a real CPU
and an emulator. We complete this goal by inserting the prologue
and epilogue instructions. The prologue instructions aim to set the
execution environment while the epilogue instructions will dump
the execution result for comparison to check whether the tested
instruction stream is an inconsistent one.

We implement a prototype system called Examiner, which con-
sists of a test case generator and a differential testing engine. Our
test case generator generated 2, 774, 649 instruction streams that
cover all the 1, 998 ARM instruction encodings in four instruction
sets (i.e., A64, A32, T32, and T16). On the contrary, the same number
of randomly generated instruction streams can only cover 54.5%
instructions encodings, which shows the sufficiency of our test case
generator. We then feed these test cases into our differential test-
ing engine. By comparing the result between the state-of-the-art
emulator (i.e., QEMU [12]) and real devices in different architec-
tures (ARMv5, ARMv6, ARMv7, and ARMv8), our system detected
171, 858 inconsistent instruction streams, which cover 26.6% of the
instruction encodings. To demonstrate the generalization of Ex-
aminer, we further apply Examiner on two more CPU emulators
(i.e., Unicorn [17] and Angr [3]) and 223, 264 and 120, 169 inconsis-
tent instructions are located, respectively. We then explore the root
causes. It turns out that implementation bugs and the undefined
implementation in the ARM manual are the major causes. We dis-
covered 12 bugs (4 in QEMU [8, 13, 16, 22], 3 in Unicorn [9], 5 in
Angr [7, 18–21]) and all of them have been confirmed by developers.
These bugs can influence commonly used instructions (e.g., BLX)
and can even crash the emulators (e.g., QEMU and Angr).
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To show the usefulness of our findings, we further build three ap-
plications, i.e., emulator detection, anti-emulation, and anti-fuzzing.
By (ab)using inconsistent instructions, a program can successfully
detect the existence of the CPU emulator and prevent the mali-
cious behavior from being monitored. Besides, the coverage of the
program being fuzzed inside an emulator can be highly decreased.
Note that we only use these applications to demonstrate the usage
scenarios of our findings. There may exist other applications. In
summary, our work makes the following main contributions.
Sufficient test case generator We propose a test case generator
by introducing the first symbolic execution engine for ARM ASL
code. It can generate representative instruction streams that suffi-
ciently cover different instructions (encodings) and their semantics.
Effective prototype system We implement a prototype system
named Examiner that consists of a test case generator and a differ-
ential testing engine. Our experiments showed Examiner is general
and can automatically locate inconsistent instructions.
New findings We explore and report the root cause of the incon-
sistent instructions. Implementation bugs of emulators and unde-
fined implementation in ARM manual are the major causes. Fur-
thermore, 12 bugs have been discovered and confirmed by the
developers. Some of them influence commonly used instructions
(e.g., BLX) and can make the emulators crash.

To engage with the community, we release the source code of
our system in https://github.com/valour01/examiner.

2 BACKGROUND AND MOTIVATION

2.1 CPU Emulators

CPU emulators usually support multiple CPU architectures. When
executing an instruction stream, the emulator first decodes the in-
struction stream and converts it into intermediate representations
(IR). After generating the IR, emulators like QEMU will further
translate the IR into host machine instructions, which will be exe-
cuted on the host machine directly. As the host machine provides
an operating system, other features like syscalls and the POSIX sig-
nals are also supported. Based on QEMU, Unicorn, which provides
friendly APIs to build different tools, is proposed. Unicorn aims to
emulate the CPU operations only and remove the other supports
(e.g., signals) to keep it as a lightweight one. Other binary frame-
works like Angr also support CPU emulation. Users can specify
the entry address and execute the target instruction step by step in
Angr.

2.2 Motivation

Examiner can be used to find inconsistent instructions, which can
be used in many scenarios (Section 4.4), automatically. We illustrate
how Examiner can detect the inconsistent instruction and find the
bugs of emulator with a motivation example.

2.2.1 The Encoding Schema and Semantics. Fig. 1 shows one of
the encoding schemas of instruction STR (immediate) and the cor-
responding ASL code for decoding and execution logic. Accord-
ing to the encoding schema in Fig. 1a, the value is constant (i.e.,
111110000100 and 1) for offset [31:20] and [7:7]. The values in other
offsets include 6 encoding symbols and they are Rn, Rt, P, U, W, and
Imm8.

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt Imm8
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  11 10  9   8   7   6   5   4   3   2   1   0

1 P U W

(a) The encoding schema of the STR (immediate) instruction in

Thumb-2.

1 if Rn == '1111' || (P == '0' && W == '0') then
UNDEFINED;

2 t = UInt(Rt);
3 n = UInt(Rn);
4 imm32 = ZeroExtend(imm8 , 32);
5 index = (P == '1');
6 add = (U == '1');
7 wback = (W == '1');
8 if t == 15 || (wback && n == t) then UNPREDICTABLE;

(b) The ASL code for decoding the instruction.

1 offset_addr = if add then (R[n] + imm32) else (R[n]
- imm32);

2 address = if index then offset_addr else R[n];
3 MemU[address ,4] = R[t];
4 if wback then R[n] = offset_addr;

(c) The ASL code for executing the instruction.

Figure 1: A motivation example.

Fig. 1b shows the decoding ASL code. Note that the ASL code is
simplified for presentation. The complete code can be found on the
official ARM site [4].

• In Line 1, the symbol Rn, P, and Wwill be checked. If the condition
is satisfied, the instruction stream will be treated as an UNDEFINED
one. Consequently, a SIGILL signal or undefined instruction ex-
ception will be raised by emulators.

• In line 2 and 3, the symbol Rt and Rnwill be converted to unsigned
integer t and n, respectively. Similarly, the symbol imm8 will be
extended into a 32-bit integer imm32. In line 5, 6, and 7, symbol
index, add, and wback will be assigned according to the value of
P, U, and W, respectively.

• In line 8, the symbol t, wback, and n will be checked. If the con-
dition is satisfied, the instruction stream should be treated as
UNPREDICTABLE. According to ARM’s manual, the behavior of an
UNPREDICTABLE instruction stream is not defined. The processor
vendors and the emulator developers can choose an implementa-
tion that they think is proper.

Similarly, Fig. 1c shows the ASL code for the execution logic
of the instruction. The ASL code in Fig. 1b and Fig. 1c defines the
semantics of the instruction.

2.2.2 Test Case Generation. By analyzing the encoding schema,
Examiner generates the test cases by mutating the non-constant
fields, including Rn, Rt, P, U, W and Imm8. This can generate syntacti-
cally correct instructions. However, this step is not enough, since
it may not generate the values that satisfy the condition in the
ASL code. For instance, one constraint in line 8 of Fig. 1b is t ==
15. The random values generated in the first step may not satisfy
this expression (Rt is not equal to 15). To this end, we leverage a
constraint solver to find the concrete value of Rt that satisfies the
constraint, i.e., 15. We take similar actions to solve the constraints
for other symbols in line 1 (add), 2 (index) and 4 (wback) of Fig. 1c.
To cover different execution paths of ASL code, we will also solve
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1 static bool op_store_ri(DisasContext *s,
arg_ldst_ri *a, MemOp mop , int mem_idx)

2 {
3 ISSInfo issinfo = make_issinfo(s, a->rt, a->p,

a->w) | ISSIsWrite;
4 TCGv_i32 addr , tmp;
5
6 // Rn=1111 is UNDEFINED for Thumb;
7
8 + if (s->thumb && a->rn == 15) {
9 + return false;
10 + }
11
12 addr = op_addr_ri_pre(s, a);
13
14 /* omitted QEMU code*/
15
16 return true;
17 }

Figure 2: Original code of QEMU and the patch for function

op_store_ri, which aims to translate STR instruction

Test Case 
GeneratorASL Instruction

Streams
Differential 

Testing Engine
Inconsistent 
Instructions

Figure 3: The work flow of our system

the negations of the constraints. During this process, we generated
576 instruction streams as test cases in total.

2.2.3 Differential Testing. We feed each instruction stream into our
differential testing engine (Section 3.2), which adds prologue and
epilogue instructions. The prologue instructions first set the initial
execution context before executing the instruction stream. After the
instruction stream is executed, the epilogue instructions will dump
the result for comparison. We then execute these instructions on
both emulators and real devices (e.g., RasberryPi 2B). By comparing
the execution result, we confirm that 0xf84f0ddd is an inconsistent
instruction stream. Specifically, It will generate a SIGILL signal in
a real device while a SIGSEGV signal in QEMU. We further analyzed
the root cause and successfully disclosed a bug in QEMU [13].
According to Fig. 1a, the concrete value of Rn of the instruction
stream 0xf84f0ddd is 1111. As shown in the ASL code (line 1) in
Fig. 1b. it is an UNDEFINED instruction stream. However, QEMU
does not properly check this condition. Fig. 2 shows the (patched)
function (i.e., op_store_ri) in QEMU for decoding the instruction
STR (immediate). It continues the decoding process directly from
line 12 without any check. We then submit this bug to QEMU
developers and the patch is issued (as shown in line 8-10).

3 DESIGN AND IMPLEMENTATION

Figure 3 shows the workflow of Examiner, which consists of a test
case generator and a differential testing engine. First, the test case
generator retrieves the ASL code to generate the test cases (Sec-
tion 3.1). Then, the differential testing engine receives the generated
test cases and conducts differential testing between the emulators
and real devices (Section 3.2). The instructions leading to different
execution results are identified as inconsistent instructions. We fur-
ther analyze the identified inconsistent instructions to understand
the root cause of them and how they can be (ab)used.

Algorithm 1: The algorithm to generate test cases.
Input: The encoding diagram: 𝐼_𝐸𝑛𝑐𝑜𝑑𝑒 ;
The decoding ASL code: 𝐼_𝐷𝑒𝑐𝑜𝑑𝑒 ;
The execution ASL code: 𝐼_𝐸𝑥𝑒𝑐𝑢𝑡𝑒
Output: The generated test cases:𝑇 ;

1 Function Generate(𝐼_𝐸𝑛𝑐𝑜𝑑𝑒 ,𝐼_𝐷𝑒𝑐𝑜𝑑𝑒 ,𝐼_𝐸𝑥𝑒𝑐𝑢𝑡𝑒):
2 𝑆𝑦𝑚𝑏𝑜𝑙𝑠 ,𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 ,𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 = ParseASL(𝐼_𝐸𝑛𝑐𝑜𝑑𝑒 ,

𝐼_𝐷𝑒𝑐𝑜𝑑𝑒 , 𝐼_𝐸𝑥𝑒𝑐𝑢𝑡𝑒)
3 for 𝑆 in 𝑆𝑦𝑚𝑏𝑜𝑙𝑠 do

4 𝑆.𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 = InitSet(𝑆)

5 for𝐶 in𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 do
6 𝐶.𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 = [ConstantValue]

7 for𝐶 in𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 + 𝑁𝑒𝑔𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 do

8 ValueSet = SolveConstraint(𝐶 , 𝑆𝑦𝑚𝑏𝑜𝑙𝑠 , 𝐼_𝐷𝑒𝑐𝑜𝑑𝑒 , 𝐼_𝐸𝑥𝑒𝑐𝑢𝑡𝑒)
9 for𝑉 , 𝑆 in𝑉𝑎𝑙𝑢𝑒𝑆𝑒𝑡 do

10 if 𝑉 not in 𝑆.𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 then

11 𝑆.𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 add𝑉

12 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑠 = [𝑆.𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 +𝐶.𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡]
13 𝑇𝑒𝑠𝑡𝐶𝑎𝑠𝑒 = CartesianProduct(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑠)
14 return𝑇

3.1 Test Case Generator

In theory, for a 32-bit instruction, there exist 232 = 4, 294, 967, 296
possible instruction streams, which is too large for exhaustive ex-
ploration. In our work, we need to generate representative test
cases that cover most behaviors of an instruction.

Specifically, we first parse the encoding schema to retrieve the
encoding symbols and then infer the type for symbols, e.g., a register
index or an immediate value. After that, we generate an initialized
mutation set with pre-defined rules, which are shown in Table 1,
for each type of symbol. For instance, we generate the maximum,
minimum and random values for an immediate value. Then, we
develop a symbolic execution engine to solve the constraints in the
ASL code for the decoding and execution logic. This step can add
more values to the mutation set to satisfy the constraints in the
ASL code. At last, we generate instruction streams based on the
values of encoding symbols.

Algorithm 1 shows how we generate the test cases. For each in-
struction, ARM provides an XML file to describe the instruction. We
extract the encoding schemas and the corresponding ASL code for
decoding and execution by parsing the XML file. We first retrieve
the encoding symbols (𝑆𝑦𝑚𝑏𝑜𝑙𝑠) and constant values (𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠)
in the encoding schema, as well as 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 in ASL code (line
2). We then iterate over the 𝑆𝑦𝑚𝑏𝑜𝑙𝑠 and generate the𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡

for each symbol (line 3-4), which will be introduced in detail in
Section 3.1.1. Note this is the initial mutation set for each symbol.
For the 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 , the𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 contains only the fixed value
(line 5-6). After that, we solve the constraints and their negations
to generate a new mutation set (i.e., 𝑉𝑎𝑙𝑢𝑒𝑆𝑒𝑡 ) for each symbol
(line 7-8), which will be introduced in detail in Section 3.1.2. Then
we check whether the solved value for each symbol is in the sym-
bol’s 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 (line 9). If not, we append it to the symbols’
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 (line 10-11). After that, we combine the𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡

of both symbols and constants to get the 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑠 (line 12).
Finally, considering all the possible combinations of the candidates
in the 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 for each symbol, we conduct the Cartesian
Product on the𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑠 to get the test cases (line 13).
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Table 1: The rules of initializing the mutation set.

Type of Symbol Name Mutation Set
Register Index 0 (R0); 1 (R1); 15 (PC); Random index values

Immediate Value in N bits Maximum value: 2^N -1; Minimum value: 0;
(N-2) Random Value from the enumerated values

Condition "1110" (Always execute)
Others in 1 bit "0"; "1"

Others in N bit (N >1) N random value from the enumerated values

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd Rm
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  11 10  9   8   7   6    5   4   3   2   1   0

0   0   0   x AlignSize

Type

(a) Encoding diagram of instruction VLD4 in A32 instruction set

1 case type of
2 when '0000'
3 inc = 1;
4 when '0001'
5 inc = 2;
6 if size == '11' then UNDEFINED;
7 alignment = if align == '00' then 1 else 4 << UInt(

align);
8 ebytes = 1 << UInt(size);
9 elements = 8 DIV ebytes;
10 d = UInt(D:Vd);
11 d2 = d + inc;
12 d3 = d2 + inc;
13 d4 = d3 + inc;
14 n = UInt(Rn);
15 m = UInt(Rm);
16 wback = (m != 15);
17 register_index = (m != 15 && m != 13);
18 if n == 15 || d4 > 31 then UNPREDICTABLE;

(b) Decoding code of instruction VLD4 in A32 instruction set

Figure 4: Test case generator example.

3.1.1 Initialize Mutation Set. In the phase of initializing the mu-
tation set, we consider the types of different symbols and aim to
cover different values according to their types. In particular, we
infer the type based on the symbol name. For instance, a symbol
that represents a register index usually has the name Rd, Rm, Rn, etc.
As for the immediate value, the symbol name is usually immn where
n represents the length of the value. For example, the symbol imm8
represents an 8-bit immediate value.

Table 1 shows the rules to initialize the mutation set. For a regis-
ter index, we include the PC register (index 15), R0, R1, and random
values in the set. The register R0 and R1 are used to represent the re-
turn value for function calls. As for the PC, it can explicitly change
the execution flow of the program. Thus, the register index in many
instruction encodings cannot be 15. We include it in the mutation
set to cover such cases. For the immediate value, the maximum
and minimum value are the two boundary values that need to be
covered. Apart from this, we randomly select (N-2) values, where N
represents the bit length of the symbol. Note that enumerating all
the values for one symbol is not realistic because immediate values
may have up to 24 bits, resulting in 224 = 16777216 candidates.

3.1.2 Solve Constraints. The execution paths of the ASL code de-
pend on whether the constraints are met or not, which is decided by
the value of encoding symbols. To make our test case representative,
the generated test cases should cover as many paths as possible. To
this end, we design and implement a symbolic execution engine for
the ASL code. Specifically, we assign symbolic values for encoding

symbols. Then we generate the symbolic expressions according to
the ASL code. After that, we retrieve the constraints including the
symbolic expression and feed them to SMT solvers. In this case, we
can find the concrete values of the encoding symbols that satisfy
or not satisfy the constraint.

Figure 4 shows a concrete example. In line 18, there is a symbolic
expression d4 and a constraint 𝑑4 > 31. All the related statements
(line 3, 5, 10, 11, 12, and 13) are retrieved via backward slicing
and highlighted in the green color. To solve this constraint, we
conduct backward symbolic execution. Specifically, the symbol d4
is calculated by the expression 𝑑4 = 𝑑3 + 𝑖𝑛𝑐 in line 13. Thus, the
constraint is converted to 𝑑3 + 𝑖𝑛𝑐 > 31. Given the relationship
between d3 and d2 in line 12, and between d2 and d1 in line 11, we
further convert it to 𝑈 𝐼𝑛𝑡 (𝐷 : 𝑉𝑑) + 3 × 𝑖𝑛𝑐 > 31. The expression
UInt(D:Vd) is converted to 𝑉𝑑 + 24 ×𝐷 as the symbol Vd has 4 bits.
Thus, we have the constraint 𝑉𝑑 + 16 × 𝐷 + 3 × 𝑖𝑛𝑐 > 31. Symbol
𝑖𝑛𝑐 is assigned at line 3 or line 5. Thus, the constraint is 𝑖𝑛𝑐 ==

1 𝑜𝑟 𝑖𝑛𝑐 == 2. Apart from this, we need to consider the length
of each symbol. Since 𝐷 is one bit and 𝑉𝑑 has four bits. Their
constraints are 𝐷 ≥ 0 𝑎𝑛𝑑 𝐷 < 2, 𝑉𝑑 ≥ 0 𝑎𝑛𝑑 𝑉𝑑 < 16.

We feed all these constraints to the SMT solver. It returns one
solution that 𝑉𝑑 is 13, 𝐷 is 1, and 𝑖𝑛𝑐 is 2. We then negate the
constraint 𝑑4 > 31 and repeat the above-mentioned process. In
this case, the solution is 𝑉𝑑 is 0, 𝐷 is 0, and 𝑖𝑛𝑐 is 1. Thus, the
generated 𝑉𝑎𝑙𝑢𝑒𝑆𝑒𝑡 contains three symbols and each symbol has
two candidate values. Note 𝑖𝑛𝑐’s value depends on 𝑇𝑦𝑝𝑒’s value.
As we will also solve the constraint 𝑇𝑦𝑝𝑒 == ‘0000’ and 𝑇𝑦𝑝𝑒 ==

‘0001’, the final mutation set of𝑇𝑦𝑝𝑒 must contain the value that can
make 𝑖𝑛𝑐 to be either 1 or 2. Due to the Cartesian Product between
each symbol’s mutation set, we can always generate the instruction
streams that can satisfy the constraint 𝑑4 > 31 and its negation.

Note that the path explosion in symbolic execution is not an
issue since the decoding and execution ASL code has limited con-
straints, resulting in limited paths. Meanwhile, we model the utility
functions (e.g., UInt) so that the symbol will not be propagated into
these functions. Our experiment in Section 4.1 shows that we can
generate all the test cases within 4 minutes.

3.2 Differential Testing Engine

3.2.1 Model the CPU. The differential testing engine receives the
generated instruction streams, and detects inconsistent ones. For-
mally, given one instruction stream 𝐼 , we denote the state before
the execution of 𝐼 as the initial state 𝐶𝑃𝑈𝐼 and the state after the
execution of 𝐼 as the final state 𝐶𝑃𝑈𝐹 . We denote the CPU 𝑇 ’s ini-
tial state 𝐶𝑃𝑈𝐼 (𝑇 ) with the tuple < 𝑃𝐶𝑇 , 𝑅𝑒𝑔𝑇 , 𝑀𝑒𝑚𝑇 , 𝑆𝑡𝑎𝑇 >. 𝑃𝐶
denotes the program counter, which points to the next instruction
that will be executed. 𝑅𝑒𝑔 denotes the registers used by processors
while𝑀𝑒𝑚 denotes the memory space that the tested instruction
𝐼 may write into. Note we do not consider the whole memory
space as comparing the whole memory space is time- and resource-
consuming. 𝑆𝑡𝑎 denotes the status register, which is 𝐴𝑃𝑆𝑅 in ARM
architecture. We denote the CPU 𝑇 ’s final state 𝐶𝑃𝑈𝐹 (𝑇 ) with the
tuple [𝑃𝐶𝑇 , 𝑅𝑒𝑔𝑇 , 𝑀𝑒𝑚𝑇 , 𝑆𝑡𝑎𝑇 , 𝑆𝑖𝑔𝑇 ]. Inside𝐶𝑃𝑈𝐹 (𝑇 ), all the other
attributes have the same meanings as they are inside 𝐶𝑃𝑈𝐼 (𝑇 ) ex-
cept 𝑆𝑖𝑔. 𝑆𝑖𝑔 denotes the signal or exception that the instruction
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Table 2: The statistics of the generated instruction streams. "Examiner " denotes the number of generated test cases by our test case generator.

"Random" denotes the number of randomly generated test cases. "Ratio" denotes the percentage of dividing "Random" by "Examiner ". Note

that one instruction may have different instruction encodings for different instruction sets. The total number of instructions for A32, T32, and

T16 is 489.

Instruction Set Time (s) of

Examiner

Instruction Stream Instruction Encoding Instruction Covered Constraints

Examiner Random Ratio Examiner Random ratio Examiner Random ratio Examiner Random Ratio

A64 70.51 1,094,700 421,645 38.5% 839 265 31.6% 581 178 30.6% 3,436 934 27.2%

A32 75.05 870,221 578,845 66.5% 550 415 75.5% 481 361 75.1% 4,718 3,725 79%

T32 74.58 808,770 34,598 4.2% 531 351 66.1% 451 283 62.7% 4,425 3,203 72.3%

T16 2.32 958 796 83.0% 78 57 73.1% 68 49 72.1% 122 84 68.9%

Overall 222.46 2,774,649 1,035,884 37.3% 1,998 1,088 54.5% 1,070 550 51.4% 12,701 7,946 62.6%

stream 𝐼 may trigger. If no signal or exception is triggered, the value
of 𝑆𝑖𝑔 is 0.

Given the CPU emulator 𝐸, the real device 𝑅, our differential
testing engine guarantees that 𝐸’s initial state 𝐶𝑃𝑈𝐼 (𝐸) is equal to
𝑅’s initial state 𝐶𝑃𝑈𝐼 (𝑅). 𝐶𝑃𝑈𝐼 (𝐸) = 𝐶𝑃𝑈𝐼 (𝑅) iff:

∀𝜙 ∈< 𝑃𝐶, 𝑅𝑒𝑔,𝑀𝑒𝑚, 𝑆𝑡𝑎 >: 𝜙𝐸 = 𝜙𝑅

After the execution of 𝐼 , 𝐼 is treated as an inconsistent instruction
stream if the final state 𝐶𝑃𝑈𝐹 (𝐸) is not equal to the 𝑅’s final state
𝐶𝑃𝑈𝐹 (𝑅). More formally, 𝐶𝑃𝑈𝐹 (𝐸) ≠ 𝐶𝑃𝑈𝐹 (𝑅) iff:

∃𝜙 ∈ [𝑃𝐶, 𝑅𝑒𝑔,𝑀𝑒𝑚, 𝑆𝑡𝑎, 𝑆𝑖𝑔] : 𝜙𝐸 ≠ 𝜙𝑅

3.2.2 Our Strategy. To conduct the differential testing, we insert
prologue and epilogue instructions. We first register the signal
handlers to capture different signals. To make the initial state con-
sistent, we set the value of general purpose registers to zero except
PC. After setting up the initial state, an instruction stream will be
executed. Then we dump the CPU state either after the execution
or in the signal handler so that we can compare the execution result.
For registers including status register (i.e., APSR), we push them on
the stack and then write them into a file. For the memory, we utilize
Capstone [10] to extract the target memory address that the in-
struction will be written into. After that, we load the target address,
and push it on the stack for later inspection. Note that the number
of memory write instructions is limited. We manually check the
effectiveness of Capstone in analyzing these instructions and find
it to work well. Finally, we compare the result collected from the
emulator and a real device. If the instruction stream results in a
different CPU final state, (𝐶𝑃𝑈𝐹 (𝐸) ≠ 𝐶𝑃𝑈𝐹 (𝑅)), it will be treated
as an inconsistent instruction stream.

3.3 Implementation Details

We implement Examiner in Python, C and ARM assembly. In par-
ticular, we implement the test case generator in Python. We parse
the ASL code, extract the lexical and syntactic information with
regular expressions. We use Z3 [23] as the SMT solver to solve the
constraints. The differential testing engine is implemented in C and
assembly code with some glue scripts in Python. Specifically, the
initial state setup and the execution result dumping is implemented
with inline assembly code. In total, Examiner contains 5, 074 lines
of Python code, 220 lines of C code, and 200 lines of assembly code.

4 EVALUATION

In this section, we evaluate Examiner by answering the following
four research questions.
• RQ1: Is Examiner able to generate sufficient test cases?
• RQ2: Is Examiner able to detect inconsistent instructions? What
are the root causes of these inconsistent instructions?

• RQ3: Is Examiner general to be applied to the other emulators?
• RQ4:What are the possible usage scenarios of inconsistent in-
structions?

4.1 Sufficiency of Test Case Generator (RQ1)

We generate the test cases according to the ARMv8-A manual,
which introduces ASL. Specifically, the manual includes four differ-
ent instruction sets. In AArch 64 mode, the A64 instruction set is
supported. For the AArch 32 mode, it consists of three different in-
struction sets. They are ARM32 with 32-bit instruction length (A32),
Thumb-2 with instruction length of mixed 16-bits and 32-bits (T32),
and Thumb-1 with 16-bit instruction length (T16). They are also
supported by previous ARM architectures (e.g., ARMv5, ARMv6,
ARMv7). To locate the inconsistent instructions in different ARM
architectures, we generate the test cases for all the instruction sets.

The number of generated test case is sufficient. Table 2 shows
the statistics of the generated instruction streams. The column
"Examiner" denotes the number of different attributes for our test
case generator. In total, 2, 774, 649 instruction streams are generated
within 4 minutes, which cover 1, 998 instruction encodings in 1, 070
instructions. Note that the total number of instruction encodings
and instructions in ARM manual is 1, 998 and 1, 070, respectively,
which means all the instruction encodings and instructions are
covered. Note that the generated instruction streams are rather
small for T16 due to the small number of instruction encoding
schemes and limited instruction length. Overall, all the generated
instruction streams are syntactically correct, which means they
all map to one of the encoding schemas. Furthermore, more than
12 thousand constraints and their negations, which are related to
encoding symbols, are solved, indicating the multiple behaviors of
the instructions are explored.

To further demonstrate the effectiveness of the test case gen-
erator, we randomly generate the same number of test cases for
each instruction set. We repeat the randomly generated process for
10 times and calculate the average value. Then we check whether
the generated instructions are syntactically correct ones or not. If
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1 boolean AArch32.ExclusiveMonitorsPass(bits (32)
address , integer size)

2 // It is IMPLEMENTATION DEFINED whether the
3 // detection of memory aborts happens before or
4 // after the check on the local Exclusive Monitor.
5 // As a result , a failure of the local monitor can
6 // occur on some implementations even if the
7 // memory access would give an memory abort.
8 ...
9 return

Figure 5: Two different implementations are defined in the anno-

tation of function ExclusiveMonitorsPass, which is called by many

instructions’ executing code

they are, we calculate how many instruction encodings, how many
instructions, and how many constraints are covered by these in-
struction streams. According to the Column "Random" and "Ratio"
in Table 2, only 37.3% generated instruction streams are syntacti-
cally correct, which means all the others are illegal instructions
and they are not effective to test the potential different behaviors
between real devices and CPU emulators. Among the syntactically
correct instruction streams, the randomly generated instruction
streams can only cover 54.5% instruction encodings and 51.4% in-
structions. Nearly a half of instructions can not be covered with
the randomly generated instruction streams. Specifically, many of
the T32 instructions cannot be covered with randomly generated
instructions, which means many of these instructions have fixed
values. As for the coverage of constraints, 37.4% constraints can
not be explored, resulting in a relatively limited behaviors being
explored.

Answer to RQ1: Examiner can generate sufficient test cases,
which are all syntactical correct instruction streams and can
cover all instruction encodings and instructions. On the con-
trary, only 37.3% of the same number of randomly gener-
ated instruction streams are syntactical correct. Furthermore,
45.5% instruction encodings, 48.6% instructions, and 37.4%
constraints cannot be explored by these randomly generated
instructions.

4.2 Differential Testing Results and Root

Causes (RQ2)

We feed the generated test cases into our differential testing engine
to locate the inconsistent instructions. Table 3 shows the result.
Experiment Setup We conduct the differential testing between
QEMU (version 5.1.0) and four real devices (OLinuXino iMX233 in
ARMv5, RaspberryPi Zero in ARMv6, RaspberryPi 2B in ARMv7,
and Hikey 970 in ARMv8). For ARMv5, only ARM32 is supported.
Meanwhile, QEMU does not support Thumb-2 for ARM1176 of
ARMv6. Thus, we only test the A32 instruction set on ARMv5 and
ARMv6.

In total, it takes around 2700 seconds of CPU time for QEMU,
which is run on the Intel i7-9700 CPU. For the real devices, the CPU
time cost ranges from 5276 seconds to 46238 seconds (13 hours),
depending on the specific devices. Thanks to the representative test
cases, the differential testing for all the test cases can be finished
within acceptable time.

Testing Result According to Table 3, 171, 858 inconsistent in-
struction streams are found, owning to 6.2% of the whole test cases.
Note one instruction stream may be tested in different architec-
tures (e.g.,A32 instruction set in ARMv5, ARMv6, and ARMv7), the
number in column "Overall" is the union of the other columns. Fur-
thermore, these inconsistent instruction streams cover 531 different
instruction encodings and 316 instructions, owning 26.6% and 29.5%
of the tested instruction encodings and instructions, respectively.

Inconsistent Behaviors We further analyze the inconsistent
instruction streams and categorize them according to our modeled
CPU. We noticed that most of the inconsistent streams (i.e., 95.2%)
will trigger different signals between the real device and emulators.
A small number of instruction streams may not trigger the signal
or trigger the same signal but have different register or memory
values (i.e., 4.8%). 2 instructions can make QEMU crash but are
executed normally in the real devices. Thus, we categorize them as
"Others".

Root Cause Based on the inconsistent streams, we explore the
root cause. First, there are implementation bugs. We discovered
4 bugs in QEMU [8, 13, 16, 22] in total, which influence 11 in-
struction encodings. Some of the bugs are related to very common
instructions. The first bug influences the BLX instruction [8]. The
BLX instruction can be an undefined one in specific cases, which
should raise SIGILL signal. However, QEMU does not follow the
specification and will disassemble it as a FPE11 instruction. In this
case, the whole execution logic is wrong. The second bug influence
STR instruction [13] and is illustrated in detail in Figure 2. QEMU
does not properly check the condition that the STR instruction
in thumb mode can be an undefined instruction, which result in
inconsistent execution results. The third bug influences many load-
/store instructions [16] (e.g., LDRD, STRD, etc). The target address
of these load/store instructions should be word aligned. However,
QEMU does not check it properly. The last bug is about WFI instruc-
tion [22] and it can make QEMU crash. WFI denotes waiting for
interrupt and is usually used in system-mode emulation. However,
ARM manual specifies that it can also be used in user-space. QEMU
does not handle this instruction well and an abort will be generated.
All of the 4 bugs are confirmed and patched by QEMU developers.
This also demonstrates the capability of Examiner in discovering
the bugs of the emulator implementation.

Apart from the bugs, most of the inconsistent instructions are
due to the undefined implementation in the ARMmanual. There are
three different kinds of undefined implementations. The first one
is UNPREDICTABLE ( Section 2.2). UNPREDICTABLE leaves open
implementation decision for emulators and processors. The second
is Constraint UNPREDICTABLE. Constraint UNPREDICTABLE
provides candidate implementation strategies and the developer or
vendor can choose from one of them. The third is that the annotation
of the ASL code indicates the implementation is undefined. Figure 5
shows an example. In the function ExclusiveMonitorsPass, which
is called by the executing code of instruction STREXH, there is an
annotation for the implementation. Note the check on the local
Exclusive Monitor would update the value of a register. Thus, if the
detection of memory aborts happens before the check, the value of
the register would not be updated while the detection happens after
the check can update the value, resulting in different register value.
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Table 3: The results of differential testing for QEMU. "CPU Time" denotes the sum of the CPU time for all test cases, which is in seconds. We

do not count the sum of CPU time for real devices as they have different CPUs. "Inst" denotes Instruction. "Inst_S" denotes Instruction Stream.

"Inst_E" denotes Instruction Encoding. UNPRE. denotes UNPREDICTABLE. X | Y : X denotes the number of the attribute indicated by the row

name while Y denotes the percentage of dividing X by Z. For data in "Testing Result", Z stands for the row "Tested Inst_S", "Tested Inst_E", or

"Tested Inst". For data in and "Root Cause", Z stands for "Inconsistent Inst_S", "Inconsistent Inst_E", or "Inconsistent Inst".

Architecture ARMv5 ARMv6 ARMv7 ARMv8 Overall
Experiment Setup
Instruction Set A32 A32 A32 T32&T16 A64 -
QEMU Binary qemu-arm qemu-arm qemu-arm qemu-aarch64 -
QEMU Model ARM926 ARM1176 Cortex-A7 Cortex-A72 -
Device Name OLinuXino IMX233 RaspberryPi Zero RaspberryPi 2B Hikey 970 -
CPU Time (Device) 46238.0s 6901.7s 6194.2s 5276.0s 9145.0s -
CPU Time (QEMU) 530.5s 540.6s 538.0s 462.1s 625.9s 2702.1s
Tested Inst_S 870,221 870,221 870,221 809,728 1,094,700 2,774,649
Tested Inst_E 550 550 550 609 839 1,998
Tested Inst 481 481 481 462 581 1,070
Testing Result The percentage is based on the number of tested instructions (streams/encodings)
Inconsistent Inst_S 40,892 | 4.7% 18,043 | 2.1% 66,860 | 7.7% 51,823 | 6.4% 21,373 | 2.0% 171,858 | 6.2%
Inconsistent Inst_E 184 | 33.5% 175 | 31.8% 273 | 49.6% 271 | 44.5% 17 | 2.0% 531 | 26.6%
Inconsistent Inst 173 | 36.0% 167 | 34.7% 232 | 48.2% 228 | 49.4% 15 | 2.6% 316 | 29.5%
Inconsistent Behaviors The percentage is based on the number of inconsistent instructions (streams/encodings)
Signal (Inst_S) 38,480 | 94.1% 17,635 | 97.7% 66,660 | 99.7% 50,940 | 98.3% 16,656 | 77.9% 163,659 | 95.2%
Signal (Inst_E) 175 170 268 267 15 521
Signal (Inst) 164 162 227 224 13 312
Register/Memory (Inst_S) 2,411 | 5.9% 407 | 2.3% 199 | 0.3% 881 | 1.7% 4,716 | 22.1% 8,195 | 4.8%
Register/Memory (Inst_E) 28 15 22 19 3 64
Register/Memory (Inst) 28 15 22 16 3 54
Others (Inst_S) 1 | 0.0% 1 | 0.0% 1 | 0.0% 2 | 0.0% 1 | 0.0% 4 | 0.0%
Others (Inst_E) 1 1 1 2 1 4
Others (Inst) 1 1 1 1 1 2
Root Cause The percentage is based on the number of inconsistent instructions (streams/encodings)
Bugs (Inst_S) 1 | 0.0% 1 | 0.0% 1 | 0.0% 582 | 1.1% 1 | 0.0% 584 | 0.3%
Bugs (Inst_E) 1 1 1 9 1 11
Bugs (Inst) 1 1 1 6 1 7
UNPRE. (Inst_S) 40,891 | 100.0% 18,042 | 100.0% 66,859 | 100.0% 51,241 | 98.9% 21,372 | 100.0% 171,274 | 99.7%
UNPRE. (Inst_E) 183 174 272 269 16 527
UNPRE. (Inst) 172 166 231 227 14 314

Note that we can feed the instruction streams into our symbolic
execution engine and it will check whether an instruction stream
is UNPREDICTABLE or not automatically. In this case, users can
filter out the test cases whose implementations are not defined and
use the filtered ones to explore the bugs of emulators. Examiner is
proposed to find the inconsistent instructions. Thus, we include the
instruction streams that can result in UNPREDICTABLE behavior
as the test cases.

Answer to RQ2: Examiner can detect inconsistent instruc-
tions. In total, 171,858 inconsistent instruction streams are
found, which covers 26.6% (i.e.,531/1998) instruction encod-
ings and 29.5% instructions (i.e., 316/1070). The implemen-
tation bugs of QEMU and the undefined implementation in
ARM manual are the major root causes. 4 bugs are discovered
and confirmed by QEMU developers, which influence 11 in-
struction encodings including commonly used instructions
(e.g., BLX).

4.3 Generalization of Examiner

To demonstrate the generality of Examiner, we further apply Ex-
aminer on evaluating the other two lightweight but also popular

CPU emulators (i.e., Unicorn in version 1.0.2rc4 and Angr in version
9.0.7833). Different from QEMU, Unicorn and Angr do not provide
options to specify the ARMv5 or ARMv6 architecture. In this case,
we evaluate ARMv7 and ARMv8. Meanwhile, Unicorn and Angr do
not have good support on advanced instructions [5]. For instance,
many SIMD instructions will make Angr crash, resulting in 5 new
bugs. Instructions (e.g., WFE [6]) that rely on kernel or multiproces-
sor are also not supported. Thus, we filter out these instructions in
the experiment. Note that both Unicorn and Angr do not support
signals. In this case, we build the mapping relationship between the
exceptions raised by Angr or Unicorn and the signals triggered by
operating systems. For example, the exception SimIRSBNoDecodeEr-
ror raised by Angr maps to signal number 4, which represents an
illegal instruction, triggered by operating systems.

Table 4 shows the result. 223, 264 and 120, 169 inconsistent in-
structions streams are identified for Unicorn and Angr, respectively.
They also cover hundreds of instruction encodings. They share
many of the same instruction streams with QEMU. For example,
28.2% and 21.6% instruction streams among the inconsistent in-
struction streams of Unicorn and Angr can also trigger inconsistent
behaviors between QEMU and real devices. Similar to QEMU, the
inconsistent behaviors mainly consists of two types. One is the
different triggered signals and the other is the register or memory
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Table 4: The results of differential testing for Unicorn and Angr. The attributes denotes the same meaning explained in the caption of Table 3.

Tool Unicorn Angr
Architecture ARMv7 ARMv8 Overall ARMv7 ARMv8 Overall
Instruction Set A32 T32 & T16 A64 - A32 T32 & T16 A64 -
CPU Time 31.8s 32.9s 32.4s 97.1s 7654.2s 7873.1s 10004.1s 25531.4s
Tested Inst_S 328,780 336,987 371,770 1,037,537 328,780 336,987 371,770 1,037,537
Tested Inst_E 352 398 205 955 352 398 205 955
Tested Inst 313 285 77 418 313 285 77 418
Testing Result The percentage is based on the number of tested instructions (streams/encodings)
Inconsistent Inst_S 103,520 | 31.5% 119,394 | 35.4% 350 | 0.1% 223,264 | 21.5% 70,493 | 21.4% 37,364 | 11.1% 12,312 | 3.3% 120,169 | 11.6%
Inconsistent Inst_E 267 | 75.9% 300 | 75.4% 3 | 1.5% 570 | 59.7% 154 | 43.8% 161 | 40.4% 23 | 11.2% 338 | 35.4%
Inconsistent Inst 231 | 73.8% 254 | 89.1% 2 | 2.6% 298 | 71.3% 126 | 40.3% 130 | 45.6% 10 | 13.0% 197 | 47.1%
Intersection with QEMU The percentage is based on the number of inconsistent instructions (streams/encodings)
Inconsistent Inst_S 39,515 | 38.2% 23,146 | 19.4% 350 | 100.0% 63,011 | 28.2% 22,240 | 31.5% 3,740 | 10.0% 0 | 0.0% 25,980 | 21.6%
Inconsistent Inst_E 169 | 63.3% 166 | 55.3% 3 | 100.0% 338 | 59.3% 114 | 74.0% 75 | 46.6% 0 | 0% 189 | 55.9%
Inconsistent Inst 161 | 69.7% 161 | 63.4% 2 | 100.0% 199 | 66.8% 88 | 69.8% 47 | 36.1% 0 | 0% 101 | 51.3%
Inconsistent Behaviors The percentage is based on the number of inconsistent instructions (streams/encodings)
Signal (Inst_S) 103,514 | 100.0% 118,141 | 99.0% 350 | 100.0% 222,005 | 99.4% 70,487 | 100.0% 37,357 | 100.0% 12,312 | 100.0% 120,156 | 100.0%
Signal (Inst_E) 266 299 3 568 154 161 23 338
Signal ( Inst) 230 253 2 297 126 130 10 197
Register/Memory (Inst_S) 6 | 0.0% 1,253 | 1.0% 0 | 0.0% 1,259 | 0.6% 6 | 100% 7 | 0.0% 0 | 0.0% 13 | 0.0%
Register/Memory (Inst_E) 1 5 0 6 1 2 0 3
Register/Memory (Inst) 1 5 0 5 1 2 0 2
Root Cause The percentage is based on the number of inconsistent instructions (streams/encodings)
Bugs (Inst_S) 0 | 0.0% 529 | 0.4% 0 | 0.0% 529 | 0.2% 0 | 0.0% 0 | 0.0% 0 | 0.0% 0 | 0.0%
Bugs (Inst_E) 0 7 0 7 0 0 0 0
Bugs ( Inst) 0 5 0 5 0 0 0 0
UNPRE. (Inst_S) 103,520 | 100% 118,865 | 99.6% 350 | 100% 222,735 | 99.8% 70,493 | 100% 37,364 | 100% 12,312 | 100% 120,169 | 100%
UNPRE. (Inst_E) 267 296 3 566 154 161 23 338
UNPRE. (Inst) 231 253 2 297 126 130 10 197

Table 5: The statistics on detecting emulators.

Mobile Type CPU A64 A32 T32 & T16

Samsung S8 SnapDragon 835
Huawei Mate20 Kirin 980
IQOO Neo5 SnapDragon 870
Huawei P40 Kirin 990

Huawei Mate40 Pro Kirin 9000
Honor 9 Kirin 960
Honor 20 Kirin 710

Blackberry Key2 SnapDragon 660
Google Pixel SnapDragon 821
Samsung Zflip SnapDragon 855
Google Pixel3 SnapDragon 845

values. We also explored the root cause of these inconsistent in-
structions. Similar to QEMU, undefined implementation and bugs
are the major causes. 3 bugs are located in Unicorn.

Answer to RQ3: Examiner is general to be applied to the
other CPU emulators (i.e., Unicorn and Angr). With Examiner,
we disclosed 8 more bugs (5 in Angr and 3 in Unicorn) and
located a huge number of inconsistent instruction streams in
the two CPU emulators).

4.4 Applications of Inconsistent Instructions

(RQ4)

The inconsistent instructions can be used to detect the existence of
emulators. Furthermore, detecting emulators can prevent the binary
from being analyzed or fuzzed, which is known as anti-emulation
and anti-fuzzing technique.

1 void sig_handler(int signum) {
2 record_execution_result(i++);
3 siglongjmp(sig_env , i);
4 }
5
6 Bool JNI_Function_Is_In_Emulator () {
7 register_signals(sig_handler);
8 i = sigsetjmp(sig_env ,0);
9 switch (i){
10 case 1:
11 execute(inconsistent_instruction_n);
12 record_execution_result(i++);
13 longjmp(sig_env ,i++);
14 case 2:
15 ...
16 case n:
17 }
18 return compare_result ();
19 }

Figure 6: Pseudo code of the native code for detecting the emulator.

4.4.1 Emulator Detection. The inconsistent instructions can be
used to detect emulators. Considering the popularity of Android
systems, we target Android applications. Specifically, we build a
native library by using the inconsistent instructions.

Figure 6 shows the pseudo code of the library. Function JNI_Func-
tion_Is_In_Emulator (line 6) returns True if the emulator is detected.
Inside the function, we register signal handlers for different signals
(line 7). After the execution of each instruction stream, we will
record the execution result either in the signal handler (line 2) or
after the execution (line 12). Then we use the function longjmp (line
13) or siglongjmp (line 3) to jump back to the place where calling
sigsetjmp (line 8). As i would increase by 1 after the execution of
one instruction stream, we can execute hundreds of instruction
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 0xe6100000
 n = UInt(Rn) = 0
 t  = UInt(Rt)  = 0
 if n == t then UNPREDICTABLE
  

void sigill_handler(){
    /*malicious behavior*/
}

void sigsegv_handler(){
    exit();    
}

Real Device

QEMU

Figure 7: Inconsistent instruction can prevent the malicious behav-

ior being detected by emulators

1 0x10000: e51b3008 LDR r3 ,[fp ,#-8]
2 0x10004: e1a03000 MOV r3,r0
3 0x10008: e7cf0e9f BFC r0, #0xf, #1
4 // BFC instruction is to clear specific bits
5 // e7cf0e9f is an UNPREDICTABLE encoding
6 // e7cf0e9f is executed normally in real device
7 // e7cf0e9f triggers SIGILL signal on QEMU
8 0x1000c: e1a00003 MOV r0,r3
9 0x10010: e50b3008 STR r3 ,[fp ,#-8]

Figure 8: Instrumented instruction streams for anti-fuzzing.

streams in one function by adding corresponding case conditions.
Each instruction stream can make an equal contribution to the final
decision on whether the current execution environment is in real
devices or emulators. Finally, if more instruction streams decide
the application are running inside an emulator, the compare_result()
will return True and vice versa.

We automatically generate the test library with template code
and build three Android apps for different instruction set (i.e., A64,
A32, and T32&T16).We run the applications on 12 different mobiles
in different CPUs from 6 different vendors. Meanwhile, we run the
applications in the Android emulator provided by Android studio
(version 4.1.2). If the function JNI_Function_Is_In_Emulator returns
True in the emulator and returns False in real mobiles. We consider
it to successfully detect the emulator. Table 5 shows the evaluation
result, all the mobile apps can detect the existence of emulators and
real mobiles successfully.

4.4.2 Anti-Emulation. Anti-emulation technique is important. On
the attacker’s side, it can be proposed to increase the bar for ana-
lyzing the malware. On the defender’s side, commercial software
needs to protect the core functionality and algorithms from being
analyzed. Thus, it is widely used in the wild [65].

The inconsistent instructions can be used to conduct anti-emula-
tion and can prevent the malware’s malicious behavior from being
analyzed. Specifically, we use one of the state-of-the-art dynamic
analysis platforms (i.e., PANDA [11]) to demonstrate the usage.
PANDA is built upon QEMU and supports many functionalities
(e.g., taint analysis, record and replay). We port one of the open
source rootkits (i.e., Suterusu [14]) to Debian 7.3. We register two
different signal handlers for SIGILL and SIGSEGV, respectively.
Then we instrument one instruction stream (i.e., 0xe61000000). This
is an LDR instruction. According to the encoding schema, encoding
symbol Rn and Rt’ values are both zero. The ASL code of decoding

Table 6: Overhead information of anti-fuzzing.

Library Test Suite1 Space Overhead Runtime Overhead
libpng (readpng) built-in (254) 4.0% (+7KB) 0.52%
libjpeg (djpeg) GIT (97) 4.3% (+8KB) 0.61%
libtiff (tiffinfo) built-in (61) 2.2% (+8KB) 0.59%

Overall 3.5% 0.57%
1 The number of test inputs in test suite is shown in the bracket.

would check whether n equals to t. If so, it is an UNPREDICTABLE
instruction stream. Real devices think this is an illegal instruction
stream and will raise the SIGILL signal while PANDA tries to ex-
ecute the instruction stream. Then SIGSEGV will be raised as the
address pointed by R0 cannot be accessed. In this case, the mali-
cious behavior will only be triggered in real devices. Meanwhile,
when we use the PANDA to analyze the malware, no malicious
behavior will be monitored and the program will exit inside the
sigsegv_handler.

4.4.3 Anti-Fuzz. Fuzzing is widely used to explore vulnerabili-
ties. To help the released binaries from being fuzzed by attack-
ers, researchers utilize anti-fuzzing techniques [35, 43]. Consid-
ering that many new binary fuzzing frameworks are based on
QEMU [2, 30, 33, 67], the inconsistent instructions can be used
as a mitigation approach towards fuzzing technique.

We demonstrate how the inconsistent instructions can be used to
conduct anti-fuzzing tasks with a relatively low overhead and high
decreased coverage ratio. Specifically, we instrument a snippet of
assembly code into the release binary, which is shown in Figure 8. At
address 0x10008, the instruction BFC is used to clear bits for register
R0. Note we move the value of R0 to R3 before the instruction BFC
and return it back after the execution of BFC. This can guarantee
the instrumented instructions will not affect the execution result
of the binary on the real device. The instruction stream 0xe7cf0e9f
is an UNPREDICTABLE one. It can be executed normally in real
devices while triggering a signal on QEMU.

We developed a GCC plugin to instrument the above mentioned
inconsistent instruction streams at each function entry and ap-
ply this plugin on three popular used libraries (i.e., libtiff, libpng,
and libjpeg) during the compilation process to generate released
binaries. Table 6 shows the space and runtime overhead of the in-
strumented binary compared with the normal (non-instrumented)
ones. The space overhead is measured by comparing the binary
size. For runtime overhead, we measure it by running test suites on
both binaries and comparing the cost of time. We noticed that the
instrumented binary imposes negligible space and runtime over-
head to the binary. The average space overhead for the protected
binary is around 4%, and the runtime overhead is less than 1%.

We then measure the effectiveness of anti-fuzzing. We fuzz the
instrumented binaries and the normal ones with AFL-QEMU (ver-
sion 2.56b) for 24 hours. The seed corpus is the test suite used for
each library in Table 6. We collect the coverage information for the
instrumented and the normal ones. Figure 9 shows the results. It
is easy to see that the coverage for instrumented binaries cannot
increase (because QEMU fails to execute binaries correctly), while
the normal ones will increase with the fuzzing time.

Note this is to demonstrate the ability of inconsistent instructions
on anti-fuzzing tasks. How to stealthily use these instructions is
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Figure 9: The result of Anti-Fuzzing experiment on three libraries. The blue lines show the coverage over 24 hours of fuzzing.

The orange line shows the coverage for instrumented binaries, which cannot increase due to failed executions of QEMU.

out of our scope. It is not easy for attackers to precisely recognize
all the inconsistent instructions, which will be discussed in detail
(Section 5).

Answer to RQ4: The inconsistent instructions are useful.
We demonstrate that the inconsistent instructions can be used
to detect the existence of the CPU emulator and prevent the
malicious behavior from being monitored by dynamic analysis
frameworks. Furthermore, the path coverage of programs
fuzzed in emulators can be highly decreased with the help of
inconsistent instructions.

5 DISCUSSION

Advancement over iDEV [57] Though both Examiner and
iDEV use differential testing with generated test cases, Examiner
has better scalability and capability on locating inconsistent instruc-
tion streams in terms of the following perspectives. 1) Test case
generation: Examiner utilizes the symbolic execution technique
to generate the test cases, which can cover more execution paths.
The fact that we can detect the emulator bugs with about 2.7 million
instruction streams demonstrates the effectiveness of our test cases.
On the contrary, 34 million instruction streams are tested by iDEV,
and no bugs are found. 2) Differential testing: iDEV only com-
pares the triggered signals while Examiner compares the whole
CPU state including signal number or raised exceptions, register
value, memory value, etc. In this case, we can findmore inconsistent
instructions compared with iDEV in theory. For instance, among
the 171,858 inconsistent instruction streams for QEMU, 8,195 are
inconsistent in terms of different register or memory values, which
cannot be detected by iDEV. Furthermore, Unicorn and Angr can
not trigger the signals and iDEV can not work on testing these
two emulators. Thus, the identified 223,264 instruction streams for
Unicorn and the 120,169 ones for Angr can not be detected by iDEV
in theory, either. Examiner supports testing Unicorn and Angr by
building the mapping relationship between the triggered signal
number by real devices and the raised exceptions by the emulators.
3) Evaluation: We evaluate Examiner on 4 different ARM ver-
sions and three CPU emulators while iDEV only evaluate QEMU
on one specific ARM version (i.e., ARMv7). This demonstrates the
scalability of Examiner. For iDEV, testing 34 millions test cases on
machine in ARMv5&v6 would take a rather long time (i.e., more

than 500 CPU hours), which is not efficient. Thanks to our symbolic
execution engine, we can explore most of the execution paths with
about 2.7 million test cases, which can save a lot of testing time,
and find bugs on all the emulators. 4) Usage Scenario: Although
the iDEV authors discussed the potential usage scenario of the
inconsistent instructions, we demonstrate how these inconsistent
instruction can be used in practice and how they can be abused by
attackers with three different applications.

Detecting (Ab)Used Inconsistent Instructions Section 4.4
shows that attackers or vendors can (ab)use these inconsistent
instructions. The abused inconsistent instructions are not easy to
be detected. This is because there are many inconsistent instruc-
tions and some of them are even commonly used (i.e., BLX). Apart
from this, attackers can encrypt these instruction streams as data.
Then these encrypted instruction streams can be decrypted and
executed during runtime, which can increase the bar for detection.
Furthermore, how to hide these inconsistent instruction streams
from being detected is a Cat and Mouse problem. Stealthily using
these instructions is out of our scope.

Testing Instructions in Privileged Environments Currently,
the generated instruction streams are tested under unprivileged
mode in both CPU emulators and real devices. Some instruction
streamsmay have different execution results under privileged mode.
For instance, the instruction WFI, which results in a bug of QEMU
user-mode, may not be an inconsistent instruction while executing
in privileged mode. We plan to port Examiner to kernel-space in
the future.

Testing Instruction Stream Sequences Examiner now tests
only one instruction stream each time during the differential testing.
We can also test multiple instruction streams (instruction stream
sequences) in the differential testing. The instruction stream se-
quences may trigger multiple system states and we can test the
decoding/executing logic towards different state flags. How to de-
sign representative instruction stream sequences, and how to locate
the inconsistent one will be the challenge, which is left as future
work. Nevertheless, we have already discovered a huge number of
inconsistent instruction streams with Examiner, covering 29.5% of
instructions. Every instruction stream sequence that contain the
inconsistent instruction stream can result in inconsistent behaviors.
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Other Architectures The whole framework of Examiner is
architecture-independent. We apply symbolic execution technique
on ARM ASL, which can help to explore multiple behaviors and
generate sufficient test cases automatically. For the other archi-
tectures, symbolic execution technique can also be used if similar
architecture specific language is provided. Otherwise, new test case
generation algorithm should be developed in order to explore more
execution behaviors. However, this is one time effort. The generated
test cases can be used to test the implementation of both hardwares
and emulators. In addition, the CPU state for the other architectures
should also be modeled correctly. Based on the correctly modeled
CPU state, the differential testing engine needs to set the initial
CPU state before the execution of the target instruction and dump
the CPU state for comparison after the execution.

6 RELATEDWORK

6.1 Testing CPU Emulators

Several works are proposed to test the CPU emulators. Lorenzo et al.
proposed EmuFuzzer to test the CPU emulators [54, 55]. However,
the seed used for testing mainly relies on randomization and a CPU-
assisted mechanism, which may not cover all the CPU behaviors.
KEmuFuzzer is proposed to test the whole system emulators [53].
However, KEmuFuzzer relies on the manually written template to
generate test cases. PokeEMU [52] utilizes binary symbolic execu-
tion to generate more test cases from a high-fidelity emulator and
apply these test cases on low-fidelity emulators. However, whether
the high-fidelity emulator strictly follows the rule of specification
is unknown. Furthermore, all the above mentioned works target
x86/x64 architectures. Though iDEV [57] studies the semantic devi-
ation problem in ARM instruction, the generated test cases are not
sufficient and redundant, which cannot cover all the instruction
behaviors. Meanwhile, iDEV only focuses on the triggered signals
during the execution process without checking the whole CPU
state, resulting in many inconsistent instructions unexplored. Fur-
thermore, the evaluation is limited to ARMv7 and QEMU. There are
many other ARM architectures (e.g., ARMv5, ARMv6, and ARMv8)
and lightweight but also popular emulators (i.e., Unicorn, Angr),
which many frameworks are based on [25, 37, 51, 64].

6.2 Differential Testing

Differential testing is introduced by McKeeman et al. [56] to detect
bugs by comparing the inconsistent behaviors between different
entities. For example, Yang et al. proposed Csmith, a powerful tool
that can generate multiple C programs. With Csmith, hundreds of
bugs are detected in the C compiler. Regarding the same goal, Le
et al. introduced equivalence modulo inputs (EMI) [47] and many
other differential testing tools are built based on EMI to validate
the compiler implementations [48, 60]. In addition, researchers also
utilize differential testing to validate the Database Management
Systems (DBMS). Slutz et al. proposed the tool RAGS to explore
bugs by executing different SQL queries on multiple DBMS. Gu
et al. evaluate the accuracy of DBMS optimizer by using options
and hints to force the generation of different query plans. Jung
et al. developed APOLLO [42] to test the performance regression
bugs in DBMSs . Furthermore, differential testing is powerful and
applied to different domains such as testing SMT solvers [62, 63],

JVM implementations [44] , symbolic execution engines [44], and
PDF readers [46].

6.3 Anti-Emulation Technique

Previous anti-emulation works [58] divide the anti-emulation tech-
nique into three categories. They are differences in behavior, dif-
ferences in timing, and hardware specific values. Our work can
automatically locate the inconsistent instructions, which result in
different behaviors and can be used by the previous anti-emulation
technique. Jang et al. [39] address the importance of anti-emulation
techniques on protecting the Commercial-Off-the-Shelf (COTS)
software from being debugged or used without buying hardware.
They propose three different anti-emulation techniques. However,
some techniques rely on the race condition are not easy to trigger.

7 CONCLUSION

We design and implement Examiner, a framework that can auto-
matically locate the inconsistent ARM instructions.With Examiner,
we generate 2,774,649 representative instruction streams and detect
171, 858 inconsistent ones for QEMU. To demonstrate Examiner’s
generalization, we further apply Examiner on two other emula-
tors (i,e., Unicorn and Angr) and a huge number of inconsistent
instructions are located. We noticed that bugs and undefined im-
plementation in ARM manual are the root causes. Furthermore, we
disclosed 12 bugs (4 in QEMU, 3 in Unicorn, 5 in Angr). Some of
them influence commonly used instructions (e.g., BLX) and can even
crash the emulators (e.g., QEMU and Angr). We also demonstrate
the capability of inconsistent instructions on detecting emulators,
anti-emulation, and anti-fuzzing.
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