
When Top-down Meets Bottom-up: Detecting and
Exploiting Use-After-Cleanup Bugs in Linux Kernel

Lin Ma∗, Duoming Zhou∗, Hanjie Wu†, Yajin Zhou∗§, Rui Chang∗, Hao Xiong∗, Lei Wu∗, Kui Ren∗
∗{linma, duoming, yajin zhou, crix1021, mart1n, lei wu, kuiren}@zju.edu.cn, Zhejiang University

†hanjiew@andrew.cmu.edu, Carnegie Mellon University

Abstract—When a device is detached from the system, Use-
After-Cleanup (UAC) bugs can occur because a running kernel
thread may be unaware of the device detachment and attempt to
use an object that has been released by the cleanup thread. Our
investigation suggests that an attacker can exploit the UAC bugs
to obtain the capability of arbitrary code execution and privilege
escalation, which receives little attention from the community.
While existing tools mainly focus on well-known concurrency
bugs like data race, few target UAC bugs.

In this paper, we propose a tool named UACatcher to systemat-
ically detect UAC bugs. UACatcher consists of three main phases.
It first scans the entire kernel to find target layers. Next, it adopts
the context- and flow-sensitive inter-procedural analysis and the
points-to analysis to locate possible free (deallocation) sites in the
bottom-up cleanup thread and use (dereference) sites in the top-
down kernel thread that can cause UAC bugs. Then, UACatcher
uses the routine switch point algorithm which counts on the
synchronizations and path constraints to detect UAC bugs among
these sites and estimate exploitable ones. For exploitable bugs, we
leverage the pseudoterminal-based device emulation technique to
develop practical exploits.

We have implemented a prototype of UACatcher and evaluated
it on 5.11 Linux kernel. As a result, our tool successfully detected
346 UAC bugs, which were reported to the community (277 have
been confirmed and fixed and 15 CVEs have been assigned).
Additionally, 13 bugs are exploitable, which can be used to
develop working exploits that gain the arbitrary code execution
primitive in kernel space and achieve the privilege escalation.
Finally, we discuss UACatcher’s limitations and propose possible
solutions to fix and prevent UAC bugs.

I. INTRODUCTION

Device cleanup is triggered when a device is removed from
the system. However, if the synchronization is not properly
implemented in the OS kernel, a running kernel thread may
be unaware of the device detachment and use an object
that has been released by the cleanup thread, resulting in
Use-After-Free (UAF) bugs [1,2]. What’s worse, the device
detachment can be issued from a user space program (without
the requirement that the physical device is actually being
removed), making the exploitation of this bug practical. This
causes serious consequences to the whole system. Since this
Concurrency UAF (CUAF) occurs between the device cleanup
thread and the running kernel thread, it is named Use-After-
Cleanup (UAC) in this paper. Though the UAC vulnerability
can be exploited to launch the privilege escalation attack, to
the best of our knowledge, there do not exist off-the-shelf tools

§Corresponding author

that can systematically detect UAC bugs due to the following
two reasons.

First, how to effectively detect Concurrency UAF bugs in
OS kernel is an ongoing research effort in the community. The
main focus of most dynamic fuzzing tools [3–7] is to find
memory corruptions and they don’t apply effective oracles
to capture concurrency bugs. Besides, other systems [8,9],
including Razzer, enhance the fuzzer with tailored algorithms
to detect concurrency bugs. However, they mainly target
the data race bug, which, in contrast to the UAC bug, is
another different concurrency issue (as shown in Section II-D).
Recently, Bai et al. propose DCUAF [10] that focuses on
detecting CUAF bugs in Linux device drivers instead of data
races. Nevertheless, the lockset analysis used in the paper is
insufficient to detect UAC bugs since it introduces unnecessary
false positives (as shown in Section IV-C).

Second, the lack of the detection tool is partially due to
the neglect of the UAC bugs by the community since it was
improperly treated as a low-security impact. For one thing,
compared with direct memory corruption, the UAC bug as
a concurrency issue is of less interest to attackers for its
uncertainty. For another, in the community’s thought, a UAC
bug is triggered by malicious device detachment that requires
a real and programmable device, which is expensive and
unacceptable in a real attack scenario. Even though there are
some virtual devices, e.g., the vhci Bluetooth controller, that
can be detached from the system to trigger the cleanup in the
kernel, these virtual devices require the root privilege, which
downgrades the security impact. However, our evaluation
shows that these observations are not true, since there are UAC
bugs that can be stably exploited from a user space program
without the requirement of a real device nor the root privilege
(as shown in Section V). Due to the serious impact that the
UAC bugs could cause, there is a pressing need to propose an
efficient detection tool for such bugs.
Our Approach To this end, we propose UACatcher, the first
tool that systematically detects UAC bugs in Linux kernel. Our
tool is based on insight into the root cause of the UAC bugs.
As shown in Fig. 1, a UAC bug is caused by the concurrent
access from the kernel thread (❸) that is triggered by a system
call (top-down access) 1, to the kernel object that has been

1Technically, the thread accessing the kernel object can also be triggered
from the bottom-up access. However, in this work, we focus on the top-down
access from the system call since the user space program can take this method
to practically exploit the UAC bugs.

2138

2023 IEEE Symposium on Security and Privacy (SP)

© 2023, Lin Ma. Under license to IEEE.
DOI 10.1109/SP46215.2023.00084

20
23

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-9

33
6-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

5.
20

23
.1

01
79

35
6

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

cleanXp
roXWine

BoWWom-Wop
cleanXp

s\scall

Top-boWWom
access

 free XVe

 geW

Fig. 1: The root cause of the UAC bug. The kernel object is
freed by the bottom-top cleanup thread (❷) and used by the
top-bottom access thread (❸).

released by the cleanup thread (❷) which is triggered from
the underlying device detachment (bottom-up cleanup).

UACatcher consists of three main phases to detect UAC
bugs. It first scans the entire kernel to find target layers
and collects essential information about both cleanup routines
and the syscall routines for these layers. It then adopts the
context- and flow-sensitive inter-procedural analysis and the
points-to analysis to locate possible free (deallocation) sites in
the cleanup routine and use (dereference) sites in the syscall
routine. After that, it detects the UAC bugs among these sites
by analyzing the synchronizations and path constraints. For
detected bugs, it outputs a report for us to manually confirm
the true positives and prepare bug fixes. Moreover, UACatcher
also helps identify the race windows for the detected UAC
bugs. With the race windows, we estimate the exploitability
of a UAC bug and further leverage the pseudoterminal-based
device emulation technique to develop practical exploits.

We implement the tool prototype based on the CodeQL
analysis engine [11]. The tool is evaluated on the 5.11 Linux
kernel with 1,670 target layers. It finds 436 bugs. We manually
check these bugs and find that 346 bugs are real. All the
found bugs are reported to the Linux community and 277 of
them have been confirmed and fixed and 15 CVEs have been
assigned by the time of writing this paper (July 2022).

Additionally, we find 13 exploitable UAC bugs. We use
them to build practical exploits that can gain the arbitrary code
execution primitive and perform the privilege escalation. The
video demonstrating the exploit is in the following link: https:
//github.com/uacatcher/uacatcher-repo/blob/main/demo.gif.
Contributions Our main contributions are in the following.

• We first model the Use-After-Cleanup, a special type
of concurrent Use-After-Free bugs associated with the
device cleanup routine and the syscall routine.

• We propose UACatcher, the first tool that fills the gap
in UAC bug detection. It adopts the static analysis ap-
proach to detect UAC bugs from possible deallocation
and dereference sites.

• We evaluate the UACatcher with 1,670 target layers
of the Linux 5.11 (git commit 7289e26f395b) and find
346 true UAC bugs. All the detected bugs have been
reported to the community and 277 of them have been
confirmed and fixed and 15 CVEs have been assigned so
far. Importantly, 13 bugs are exploitable. We then develop

Fig. 2: Structs and methods for handling device removal, USB
host domain as an example

practical exploits based on them.
• We propose the possible solutions to fix and prevent UAC

bugs according to the experience of submitting kernel
patches and the communication with kernel maintainers.

II. BACKGROUND

A. Linux Device Removal Handling

To add or remove a device from the system bus dynamically,
Linux kernel has integrated the hotplugging feature with its
driver model core since the 2.4 version. The base device driver
struct device_driver, as shown in Fig. 2, maintains a special-
ized function pointer remove, which is called when the device
detaches from the host. On this basis, other derived device
drivers, which inherit the base driver struct, maintain another
customized function pointer to achieve driver-specific device
removal handling. For example, the USB (host) subsystem,
as also shown in Fig. 2, prepares the usb_driver struct. This
struct has a member with the usbdrv_wrap type, which is used
to inherit the device_driver. When a USB dongle is removed
from the host, the function that is responsible for cleanup
USB relevant resources is called via the member disconnect

pointer.

B. Use-After-Cleanup Layered Model

When a device detaches from the system, the kernel will
capture the interrupt signal and start the device cleanup
routine. This routine will go through the kernel from bottom
to top to notify each subsystem and layer about the device
detachment. Besides, there is a routine known as the syscall
routine that is triggered by the system call from a user space
program. Contrary to the device cleanup routine, it will go
through the kernel from top to bottom. As shown in Fig. 1,
since the device cleanup routine is concurrent with the syscall
routine, if the synchronization is not implemented properly, the
top-down syscall routine may be unaware that the bottom-up

22139

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

driver layer

mid layer

top layer

hardware
space

user
space

unreg-entry 2

unreg-entry n

interface 1

interface n

deallocation site

dereference site

cleanup
routine

syscall
routine

stacked
layers

unreg-entry 1

interface 2 kernel
space

Fig. 3: Simplified sketch of UAC Layered Model. The routine
that starts from the driver layer and handles the device de-
tachment is named the device cleanup routine and the routine
that starts from the top layer and performs the task of a
system call is named the syscall routine. Code snippets in the
device cleanup routine that free the resource objects are called
deallocation sites and code snippets in the syscall routine
that use the resource objects are called dereference sites. The
unreg-entry and interface are boundary functions that break
routines into subroutines.

cleanup routine is running, and use a resource object that has
been already released, resulting in Use-After-Free (UAF) bugs.
Since this kind of UAF is associated with the device cleanup
routine and the syscall routine, we call it Use-After-Cleanup
(UAC). To describe the UAC bugs formally, we introduce the
UAC Layered Model as presented in Fig. 3. The deallocation
site is defined as the position where the bottom-up cleanup
routine frees a kernel resource object. And the dereference
site is defined as the position where the top-down syscall
routine uses this kernel object. For clarity, we name a pair of a
deallocation site and a dereference site for the identical kernel
object as dPair. If the dereference site of a dPair is able to be
scheduled after the corresponding deallocation site, this dPair
causes a real UAC bug. Since the Linux kernel is organized
by layers and the cleanup/syscall routine can be divided into
layer-based segments, we refine the model by introducing the
concept of the layer-boundary functions, which include the
unreg-entry functions and the interface functions. As Fig. 3
shows, the unreg-entry function is defined as the entry point
function of the device cleanup routine that a layer exposes to
the lower layer. The interface function, in turn, is exposed to
the upper layer for undertaking the syscall routine. With the
boundary functions, we can break the entire device cleanup
routine and syscall routine into several subroutines. Therefore,
we are able to analyze these two concurrent routines layer
by layer instead of the entire kernel, which offers better
granularity for static analysis.

C. Use-After-Cleanup Example

We will present a real UAC bug in the Bluetooth stack.
This bug was introduced in Linux 2.6.22-rc2 (May. 2007).
It was fixed 14 years later (May, 2021) with the help of UA-
Catcher. As Fig. 4 shows, the function hci_unregister_dev in

3852. void hci_unregister_dev(…) {
……

3886. hci_sock_dev_event(hdev, …); //①
……

3899. destroy_workqueue(hdev->workqueue);//② deallocation
3900. destroy_workqueue(hdev->req_workqueue);

……
3922. }

FILE: linux-5.11/net/Bluetooth/hci_core.c

734. void hci_sock_dev_event(…) {
……

767. hci_pi(sk)->hdev = NULL;
……

778. }

1701. static int hci_sock_sendmsg(…) {
……

1746. hdev = hci_pi(sk)->hdev; //③
……

1829. queue_work(hdev->workqueue, …); //④ dereference
……

1841. }

FILE: linux-5.11/net/Bluetooth/hci_sock.c

device cleanup routine
syscall routine ③ ④

① ②

Fig. 4: A reported UAC bug in the Bluetooth stack and the
routine interleaving sequence for triggering it.

hci_core.c, which is the unreg-entry of the HCI top layer, will
call the destroy_workqueue on line 3899 after it notifies all
working sockets with function hci_sock_dev_event to reclaim
the target resource object hdev->workqueue. In hci_sock.c,
the function hci_sock_sendmsg needs to use this resource
object on line 1829 when a sendmsg system call is issued.
Therefore, the line 3899 site and line 1829 site constitute an in-
terested dPair. When the device cleanup routine and the syscall
routine are interleaved as Fig. 4 presents, the deallocation site
of this dPair ② is scheduled before the dereference site ④. In
other words, the function destory_workqueue will deallocate
the memory of the resource object, and thus the function
queue_work will dereference a dangling pointer, leading to a
UAC bug.

D. Data Races and UAC Bugs

A data race occurs when two threads are accessing one
shared memory location, at least one of the two accesses is
a write, and the two accesses are not synchronized properly
[12–14]. Many previous works leverage static [15,16] or
dynamic [17,18] analysis techniques to reveal such bugs in the
kernel, especially in device drivers [12,19,20] and file systems
[8,9]. However, the Use-After-Cleanup (UAC) bug proposed
in this work is a special type of CUAF bug that is different.
Specifically, different from the definition of data race bugs,
CUAF bugs are concurrency bugs that only occur when the
dereference of a dynamic object can be scheduled after the
deallocation due to synchronization issues. For UAC bugs we
target, the deallocation is associated with the device cleanup
routine and the dereference is associated with the syscall
routine. To detect a CUAF bug, we cannot directly leverage
the data race detector because of one primary reason: If we

32140

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

choose data race detection as a springboard to detect CUAF,
it is non-trivial to determine if the detected data race actually
leads to a CUAF as not all data races are harmful in Linux
kernel and it is hard to decide on that [9,21]. For instance, Bai
et al. detect 149K data races in Linux 4.19 drivers while many
of them are benign [10]. To this end, they choose to detect the
CUAF in the Linux device drivers by remodeling the bug and
leveraging the lockset algorithm [10]. Their implemented tool
DCUAF is the state-of-the-art in detecting CUAF in the kernel
which successfully detects hundreds of bugs. Nevertheless, we
find that this solution is insufficient to detect UAC bugs since it
introduces unnecessary false positives (as shown in Section III
and Section IV-C).In summary, even with mature detectors for
data races and other concurrency bugs, there is still a lack of
effective approaches to accurately detect UAC bugs.

III. KEY CHALLENGES

Detecting UAC bugs in the kernel is non-trivial due to the
three following challenges.
C-I: How to prepare target layers? There are a huge amount
of layers in the entire linux kernel. However, not all of them
are vulnerable to UAC bugs. Since it is difficult to analyze
all these layers, we need to determine which of them is an
appropriate target that is more likely to be the victim of
the UAC bug. Additionally, for a target layer, how to find
its boundary functions (unreg-entry function and interface
functions) remains another challenging task.
C-II: How to accurately locate dPairs? We note that it is
challenging to accurately locate an expected dPair. That is
because, given a dPair located by a static analysis approach,
the corresponding object which is dereferenced and the object
being released is not necessarily the same one [22]. Erro-
neously located dPair causes false positives. For example, the
DCUAF [10] has reported an unreal bug2 because the dPairs
are not accurately located.
C-III: How to accurately detect UAC bugs? As we discuss
ahead, there is a lack of effective approaches to accurately
detect UAC bugs. The methods proposed by the existing works
cannot be ported to detect UAC bugs accurately. Some of them
[23–25] mostly focused on user space multithreaded programs
hence not scalable enough to target the kernel. The others
[10,20] propose the lockset analysis method which introduces
unnecessary false positives (as shown in Section IV-C).

IV. UACATCHER DESIGN

A. Layers Preparing

1) Finding Stacked Layers via Cleanup Routine

Because not all layers in the kernel are vulnerable to UAC
bugs, i.e., layers (synchronization, security, etc) that are almost
independent of device domains, it is necessary for UACatcher
to find proper layers first otherwise effort will be wasted on
non-interesting targets. Additionally, found layers, compared

2kernel commit 3f60f468569 (”cw1200: Revert unnecessary patches that
fix unreal use-after-free bugs”)

with the entire kernel, are fine-grained targets that can improve
the efficiency and accuracy of static analysis.

UACatcher’s solution for this is to find stacked layers. As
shown in Fig. 3, stacked layers are layers that are stacked
on top of each other where the bottom is the driver layer. In
another word, layers within stacked layers are interconnected
via the unreg-entry functions and interface functions discussed
in Section II-B. To find stacked layers in the kernel, we
first find the bottom driver layers and then find the upper
layers. Specifically, UACatcher leverages the device driver
model knowledge and cleanup routine knowledge mentioned
in Section II. It first inspects the entire kernel to find all derived
driver types by checking out if a driver structure embeds
device_driver as a member. After that, we manually mark
the pointer field responsible for device removal for all found
driver structures. For instance, we mark the disconnect field
in structure usb_driver as demonstrated in Section II-A. Note
that this is accurate and efficient as the comment of the driver
structure clearly explains the usage of all pointer fields. On
that basis, UACatcher then finds all driver objects with type
analysis and extracts the unreg-entry functions through the
marked pointer fields. After the unreg-entry function of a layer
is pinpointed, UACatcher then gets the whole picture of this
layer by parsing the Kbuild and Makefile code. Based on that,
UACatcher starts to find upper layers that are stacked above
the driver layers according to two insights: (1) the unreg-entry
function of the upper layer must be called once from the lower
layers because the cleanup routine goes through layers from
the bottom to top; (2) the unreg-entry function of the upper
layer has the following characteristics according to our practice
of going through the source code.

• Type characteristic: the unreg-entry functions are void
(nonValue-returning) functions.

• Parameter characteristics: the unreg-entry functions
have only one pointer parameter.

• Name characteristics: the name of unreg-entry functions
contains tacit keywords, i.e., unregister.

For instance, the function void hci_unregister_dev(struct

hci_dev *hdev) is used in the top layer for the Bluetooth
stack and is called in Bluetooth driver layers. And function
void nfc_unregister_device(struct nfc_dev *dev) is used
in the core layer for the NFC network stack.

Hence, UACatcher performs cross-reference analysis from
already found driver layers to find upper layers and recursively
uses new-found upper layers as input to find new layers.
Eventually, we obtain all stacked layers covered in the cleanup
routine from the entire kernel with their unreg-entry functions
pinpointed.

2) Gathering Interface Functions for Syscall Routine

According to the layered model presented in Fig. 3, the
interface functions are exposed by the lower layer to the upper
layer for undertaking the top-down syscall routine. UACatcher
gathers these functions via two steps: (1) Find the potential
interface functions as many as possible. As is known, the
interface function is always called via a function pointer

42141

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

Linux
Source
Code

QL
Database

dPairs Locating

Context- and Flow-Sensitive
Inter-Procedural Analysis

Points-To-based dPairs
Locating

UAC Detecting

Routine Switch Point
Algorithm

Detected UAC dPairs

Layers Preparing

Finding Stacked Layers
via Cleanup Routine

Gathering Interface Functions
for Syscall Routine

Fig. 5: The overview of UACatcher. Its detection consists of three main phases. In the first phase, it scans the entire kernel
to find a number of target layers and collects essential information, such as the boundary functions for these layers. Then it
locates the dPairs that may cause UAC bugs via context- and flow-sensitive inter-procedural analysis and the points-to analysis.
It finally detects the UAC bug among these dPairs with the routine switch point algorithm and outputs the detected results.
The detected UAC bugs will be further confirmed with manual efforts.

[26,27]. Moreover, similar to how an unreg-entry function
of a driver layer is packed, interface functions are always
packed together in a specific (static, global) structure. For
example, all interface functions of a network layer are packed
into proto_ops structure. Unfortunately, because there are too
many such structures and there is no unified pattern among
them, it is non-trivial to manually find all of these structures.
Therefore, UACatcher looks for all possible structures and ex-
tracts their initialized function pointer members to avoid false
negatives. (2) Confirm interface functions from call sites in the
upper layer. To reduce the false positives, UACatcher filters the
found interface functions of a layer by confirming whether the
upper layer accesses it. Specifically, for an interface function
extracted from member A within the structure whose type is
B, UACatcher iterates all call sites in the upper layer to find
if there is an indirect call that dereferences a structure pointer
with type B and accesses member A. If so, UACatcher considers
this interface function as a true positive. Otherwise, UACatcher
discards this function as it is never called from the upper layer.

B. dPairs Locating

1) Context- and Flow-Sensitive Inter-Procedural Analysis

UACatcher adopts context- and flow-sensitive inter-
procedural analysis to achieve accurate static analysis. For
an input layer, we generate its (directed acyclic) call graph
by traversing the call relations starting from the boundary
functions. Specifically, we initialize an analysis stack with an
entry function and loop the analysis until the stack is empty.
When analyzing the function that popped from the analysis
stack in one loop, we break it into basic blocks and construct
its control-flow graph. Hence, all function calls inside the
analyzed function can be determined from the CFG in a flow-
sensitive manner. If the called function is defined in other
layers, it will be regarded as an external symbol and the loop
continues. Other called functions, together with the call sites
information and passing arguments will be pushed into the
analysis stack for later processing. UACatcher outputs a call
graph after the entire traversal. The nodes of this graph are
actually control-flow graphs of the corresponding functions
and the edges of this graph consist of detailed call sites and
arguments. Once the graph is constructed, it is used in points-
to analysis and UAC bug detection.

2) Points-To-based dPairs Locating

deallocation site. During the generation of the above call
graph from the unreg-entry function, we pinpoint the deal-
location sites by tracking down the call sites to the deal-
location functions, kfree() as an example. To accomplish
this, UACatcher collects the most commonly used deallocation
functions, such as kfree(), kmem_cache_free(), that are dis-
closed in previous works [10,22,28]. Additionally, UACatcher
combines static analysis to find other deallocation functions
for specialized objects. These functions always receive only
one specific pointer of the object as the argument hence we
can use signature-based analysis to find possible candidates.
As we find that most deallocation functions have keywords
like destroy, free, release in their names. UACatcher then
extracts real deallocation functions from the candidates by
regex matching and manual confirmation. For example, deallo-
cation functions like destroy_workqueue(), and kfree_skb()

are found.
dereference site. UACatcher leverages field-sensitive refined
points-to analysis to locate the relevant dereference sites.
Besides all pointer dereference expressions, if a pointer is
passed to an external function as a parameter, we also regard
it as a dereference action as we have no idea how this function
operates the pointer. During the analysis, UACatcher iterates
through all dereference actions of a layer and checks if the
action, either expression or parameter, points to the same
location as one of the previously pinpointed deallocation sites
does. If so, UACatcher marks this action as the dereference
sites for the corresponding deallocation site. To sum up, UA-
Catcher adopts a summary based context- and flow-sensitive
inter-procedural analysis and points-to analysis to locate the
possible deallocation sites and the dereference sites.
paths. For all located deallocation sites and their correspond-
ing dereference sites, UACatcher constructs all the simple
paths whose sources are the boundary functions and sinks
are these sites. The deallocation paths start from the unreg-
entry function and end at the deallocation sites while the
corresponding dereference paths start from one of the interface
functions and end at the corresponding dereference sites. Note
that the paths are not just a list of function nodes. They also
take the control-flow graph into account. If there are several
call sites that allow parent function to call child function,

52142

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

……
1. hci_req_sync_lock(hdev)
2. test_and_clear_bit(HCI_UP, &hdev->flags)
……
3. hci_req_sync_unlock(hdev)
4. destroy_workqueue(hdev->req_workqueue)
……

device cleanup routine (BT top)

……
5. test_bit(HCI_UP, &hdev->flags)
6. hci_req_sync_lock(hdev)
……
7. queue_delayed_work(hdev->req_workqueue, …)
……

syscall routine (BT top)

……
1. mutex_lock(&ndev->req_lock)
2. test_and_clear_bit(NCI_UP, &ndev->flags)
……
3. mutex_unlock(&ndev->req_lock)
4. destroy_workqueue(ndev->cmd_wq)
……

device cleanup routine (NFC nci)

……
5. mutex_lock(&ndev->req_lock)
6. test_bit(NCI_UP, &ndev->flags)
……
7. queue_work(ndev->cmd_wq, …)
……

syscall routine (NFC nci)

✓ true UAC bug ✗ false UAC bug

Fig. 6: Examples of a true UAC bug in the Bluetooth stack
(left) and a false one in the NFC stack (right). The state-of-
the-art tool reports the right one and causes false positives.

UACatcher will record all possible basic blocks paths to
promise a sound analysis result.
Moreover, to reduce the false results, UACatcher adds several
filters: (1) We set the threshold value for points-to analysis.
That is, if the points-to analysis fails to accurately pinpoint
the point sets (which is common in the kernel analysis case)
and gets low confidence, we discard the relevant site. (2) The
filter checks whether the located deallocation site is within the
same function as the allocation site. If so, this deallocation site
is discarded as it most likely acts as error handling which
has little relation to UAC bugs. (3) For each pair of the
deallocation path and the dereference path, the filter collects
and checks the sets of their common segments. If two paths
have common segments, we drop this pair of paths as these
paths may actually not be executed concurrently [10]. One
dPair will be discarded if there are no paths remaining to
reach it.

C. Use-After-Cleanup Detecting

In this phase, UACatcher detects if the located dPairs lead to
real UAC bugs. To illustrate the difference between a real UAC
bug and a false one, an example is given in Fig. 6. The path in
the left one causes a true UAC bug, of which the target object
is req_workqueue. The reason why this bug occurs is that
the syscall routine places the check of the test_bit(HCI_UP)

out of the critical section held by the hci_req_sync_lock.
That is, there is a possibility that the syscall routine passes
the test_bit first and then waits on the hci_req_sync_lock

because the device cleanup routine just holds this lock. In
another word, the read and write to the hdev->flags is not
well protected from a race condition. Hence, the deallocation
site (destroy_workqueue) is able to be reached before the
dereference site (queue_delayed_work), causing a UAC bug.
The path in the right one, however, leads to no UAC bug.
The found dereference site can never be reached after the
deallocation site is executed. That is because the read and write
to the ndev->flags are protected by the lock req_lock. After
the deallocation site is executed, the NCI_UP flag is cleared out
hence the test_bit constraint check before the dereference
site queue_work is impossible to be reached.

We note that the lockset analysis, which is used by the
state-of-the-art works [10], brings out false results in detecting
UAC bugs. For the false UAC bug in Fig. 6, because the

cleanup routine:
1. lock(l1);
2. kfree(p);
3. CONS1-CHANGE
4. unlock(l1);
5. lock(l2);
6. CONS2-CHANGE
7. kfree(q);
8. unlock(l2);

syscall routine:
9. CONS1-CHECK
10. lock(l1);
11. *p = 1;
12. lock(l2);
13. CONS2-CHECK
14. *q = 2;
15. unlock(l2);
16. unlock(l1);

①

②

③

④

⑤
⑥

⑦

⑧

Fig. 7: Example traces of the device cleanup routine and
the syscall routine used for explaining the Algorithm 1.
red represents the deallocation sites; blue represents the
dereference sites; purple represents the start of the device
cleanup routine; green represents the context switch points.
The CONS-CHECK/CONS-CHANGE are abbreviations for
constraint check and constraint change, respectively.

intersection of the dereference lockset ({req lock}) and the
deallocation lockset (∅) is empty, the lockset analysis will
recognize it as a true bug, causing a false positive. Hence,
to accurately detect the UAC bugs, UACatcher should check
the happen-before relation between the dereference site and
the deallocation site. Inspired by the previous work [29], we
propose the routine switch point algorithm to infer the happen-
before relation. The core idea of this algorithm is trying to find
appropriate context switch points which allow the dereference
site to be scheduled after the deallocation site based on the
synchronizations and the path constraints. If no context switch
point is found, the dereference site hence cannot be scheduled
after the deallocation site, which means that the happen-
before relation holds between the dereference (use) and the
deallocation (free).

Algorithm 1 defines how UACatcher detects a UAC bug.
We first explain some abbreviated macros before looking into
the routine switch point algorithm. The HHoldLock gets the
historical holding locks for an input position; The CHoldLock

gets the current holding locks, or lockset, for an input position;
The Pred gets the previous position of the input position of an
input path; The Succ gets the next position of the input position
of an input path; Upon that, the main function UACDetect

receives the deallocation path Path1 and the dereference path
Path2 of a given dPair as input. If this function returns True,
the dPair is considered to cause a UAC bug. In addition, the
function outputs the context switch points P which can help
to analyze and reproduce the bug. This algorithm first collects
the constraint checks with reverse execution (line 4-9) until
the intersection between the HHoldLock of the deallocation
site and the CHoldLock of the executing site is empty. When
this while loop is over, the position where executing site
stops is regarded as the first context switch point (switch-A).
The execution is expected to be switched from the syscall
routine to the cleanup routine at switch-A. Because the result
of InterLockA is empty, the switched execution is able to
run from the unreg-entry till the cleanup routine releases the

62143

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Routine Switch Point Algorithm
Input : deallocation path Path1, dereference path Path2

Output: context switch points P
1 Function UACDetect()
2 S1 = End(Path1), S2 = End(Path2)
3 r = S2, PC1 = ∅, PC2 = ∅
4 Linter = InterLockA(S1, r)
5 while Linter ̸= ∅ do
6 r = Pred(r, Path2)
7 if Action(r) ∈ ConstraintCheck then
8 PC1 = PC1 ∪ {Action(r)}
9 Linter = InterLockA(S1, r)

10 P = P ∪ {r}
11 r = Start(Path1)
12 Linter = InterLockB(S2, r)
13 while Linter ̸= ∅ do
14 r = Succ(r, Path1)
15 if Action(r) ∈ ConstraintChange then
16 PC2 = PC2 ∪ {Action(r)}
17 Linter = InterLockB(S2, r)

18 P = P ∪ {r}
19 if Satisfy (PC1, PC2) then
20 return True

21 return False

22 Function InterLockA(s1, s2)
23 return HHoldLock(s1) ∩ CHoldLock(s2)

24 Function InterLockB(s1, s2)
25 return CHoldLock(s1) ∩ CHoldLock(s2)

acquired locks that hinder the syscall routine from reaching
the dereference site. (line 12-17). During this execution, all
the constraint changes are collected. When this while loop is
over, the stopping position is regarded as the second context
switch point (switch-B), where the execution can switch back
to the syscall routine and try to reach the dereference site 3.
Finally, this algorithm checks the satisfaction of the collected
path constraints changes & checks. If an input dPair passes this
check, which means the dereference site of this dPair is able to
be reached after the context switch at switch-B, a UAC bug is
detected. The context switch points (switch-A and switch-B)
that cause the UAC are named the routine switch points.

Fig. 7 shows simple example traces that are used to illustrate
how this algorithm works. The traces contain two dPairs: (1)
dPair-1, deallocation site ① and dereference site ③. (2) dPair-2,
deallocation site ② and dereference site ④. For the dPair-1, the
intersected lock Linter is initialized with the InterLockA of the
deallocation site ① and the dereference site ③, which is {l1}
(line-2). In the first while loop, no constraint check is collected
and the reverse execution stops at ⑤ where the syscall routine
has not yet obtained the lock l1. Thus, ⑤ is regarded as switch-
A, and the execution switches to the start of the device cleanup
routine marked as ⑥. In the second while loop. one constraint
change is collected in the PC2 ({CONS1-CHANGE}), and
the execution stops at ⑦, that is, the switch-B. Because the col-

3Switch-B can happen before the deallocation site. In that case, the
subsequent deallocation and dereference may happen concurrently, which
means UAF is possible.

lected constraint checks PC1 (empty) are not contradictory to
the collected constraint changes PC2 ({CONS1-CHANGE}),
dPair-1 is considered to cause a UAC bug. Additionally, the
dPair-2 is detected to be a false UAC, because Algorithm 1
will find that the PC1 ({CONS2-CHECK}) and the PC2
({CONS1-CHANGE, CONS2-CHANGE}) are contradictory
to each other. In another word, after switch-B, the syscall
routine can never reach the dereference site and cause UAC
bugs.

To implement the Algorithm 1 for UACatcher, we model
synchronizations with commonly used locks in Linux kernel,
including mutex, spinlock, read/write locks, and customized
wrappers of them [18]. UACatcher analyzes all exported sym-
bols within kernel/locking to get these lock/unlock functions.
For path constraints, since there are sundry types of path
constraints in the kernel code and different protocol stacks
maintain dissimilar path constraints such as flags of states, it
is challenging to accurately extract the checks and the changes.
Currently, UACatcher supports two typical constraints: (1)
pointer nullification and relevant check; (2) constraints that
operate on bits, the test_bit for instance. In our practice,
we found that most layers count on these two constraints
to maintain the state machine. The possible false alarms
caused by the incomplete support of synchronizations and path
constraints will be discussed in Section VII.

V. UAC BUG ESTIMATION

UAC bugs could lead to serious security impacts like
privilege escalation. In this section, we estimate the UAC bug
by taking two key points into account: (1) If this UAC bug
can be easily triggered? (2) If this UAC bug can be exploited
without real devices?

A. Race Window Identification and Measurement

A UAC bug happens with uncertainty. To assess the bug
triggering possibility, one has to analyze its root cause and
identify its race windows, which is challenging. Luckily, as
the routine switch point algorithm has already pinpointed the
context switch points, we can accurately identify the race
windows of a UAC bug. To accomplish that, UACatcher
continues the reverse execution from the located switch-A
and stops the execution when it finds an additional constraint
check that is contradictory to the collected constraint changes.
After that, the race window is identified as starting from
the execution stop position and ending at switch-A. Taking
the UAC bug from the deallocation site ① and dereference
site ③ as an example, the reverse execution starts from the
switch-A (⑤) and ends at the CONS1-CHECK statement as
this constraint check conflicts with the collected ({CONS1-
CHANGE}). Hence, the race window is from the CONS1-
CHECK to lock(l1) (9-10). If the cleanup routine acquires
the lock l1 during this race window, the UAC bug is about
to be triggered. Since the race window in this example is too
small, UACatcher considers this UAC is hard to trigger.

To find UAC bugs that can be easily triggered, UACatcher
measures the size of the race window to estimate the trig-

72144

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

HCI
sock

HCI
core

HCI
ldisc

TTY
ldisc

TTY
I/O

VFS

/dev/ptmx/dev/pts/X

emu device
user-space

BT program

real serial device

①②③
kernel

TTY
driver PTY driver

device-space

Fig. 8: Steps to emulate a Bluetooth device in user space
with pseudoterminal. ①: open /dev/ptmx device file, this will
generate a corresponding slave device in /dev/pts directory.
②: use ioctl to switch and register the generated slave device
with N_HCI line discipline. ③: create an HCI socket and bring
the device up. A real serial BT device is also shown to
demonstrate the similarity.

gering possibility. In addition, during the reverse execution,
UACatcher checks if there are any time-consuming functions
or time-controllable functions being called within the race
window. Specifically, the time-consuming functions include
memory allocations/deallocations, logging, and I/O operations
that cost numbers of CPU cycles thus enlarging the race
window. The time-controllable functions are mainly helper
functions that exchange data between kernel space and user
space, e.g., the copy_{from/to}_user. If these functions are
called within the race window, the attacker can leverage
techniques like userfaultfd and fuse to fully manipulate
the consumed time [30,31]. Once time-consuming functions
or time-controllable functions are found, the UAC bug is
considered to be easily triggered.

B. User Space Device Emulation

To exploit a UAC bug that is estimated to be easily trig-
gered, UACatcher leverages the user space device emulation
technique [32]. We’ll resort to two primary building blocks
below to introduce this technique.
Pseudoterminal Device. A pseudo-terminal (sometimes ab-
breviated “pty”) [33] is a pair of virtual character devices
endpoints (files) that provide a bidirectional communication
channel. One end of the channel is called the master; the other
end is called the slave. In general, the master endpoint files
are typically used by networking applications like ssh while
the slave files are used by terminal-oriented programs such as
shells like bash [34]. On Linux systems, a user program A
can open /dev/ptmx device file to obtain the descriptor of the
master endpoint. At the same time, the PTY driver in the kernel
will allocate a unique slave endpoint file under /dev/pts/

directory that emulates a hardware text terminal device which
supports System V API. 4 So far, the slave device is ready to
be opened by other processes that want to establish the IPC
channel with program A.
Line Discipline. The job of the TTY device driver in the
kernel is to format data that is sent to it in a manner that the
hardware can understand, and receive data from the hardware
[35]. To control the flow of data, there are a number of
different line disciplines that can be selected and virtually
“plugged” into any TTY device. The TTY line discipline
(ldisc)’s job is to format the data received from a user, or
the hardware, in a specific manner. For instance, for a serial-
port-based Bluetooth controller, to format the data according
to the form of the HCI protocol conversion, a user has to open
and set the HCI line discipline for this device. Only then can
this controller be identified as a Bluetooth HCI dongle by the
kernel rather than other hardware devices.

Fig. 8 shows the steps to emulate a Bluetooth (BT) device.
First, the attacker opens the /dev/ptmx to create pseudotermi-
nal devices and obtain the file descriptors f1, f2 of the master
and slave endpoints. After that, the attacker uses ioctl system
call for fd2 to register the BT line discipline (N_HCI) for the
slave device, which is default registered with the TTY line
discipline (N_TTY). After the line discipline is switched, the
attacker has to prepare program logic that handles the data
transaction when attaching a specific BT controller. That is,
once this emulated device is brought up, the attacker needs to
read data requests from fd1 and write replying data packets
to fd1. To awaken the device cleanup routine, the attacker
just needs to close the fd2 and the PTY driver will kill the
emulated device and send the signal to the line discipline layer.

We note that there are distinct differences between the
pseudoterminal-based emulated device and the virtual device
(e.g., the vhci) which is designed for testing and fuzzing
purposes. Firstly, pseudoterminal-related code always exists
in the kernel while the virtual device code needs to be
configured and actively installed, which requires root privilege.
Additionally, operations, such as open and ioctl, on these
virtual devices also require root privilege hence raising less
interest to attackers. In contrast, the pseudoterminal-based
emulated device only asks for low privileges. According to our
practice, we find that the BT stack asks for the CAP_NET_ADMIN

when bringing up the device and the Amateur Radio and
Controller Area Network stack asks for the CAP_NET_ADMIN

when switching the line discipline. To our surprise, we find
that the NFC stack requires no privilege for emulating a
device. That is, permission checking is missing for operations
like powering up the device or configuring the device5. This
implies that pseudoterminal-based device emulation exposes
an underestimated but potentially dangerous attack surface,
thus improving the exploitability of the UAC bugs.

Recent work Frankenstein [36] also leverages pseudoter-
minal but its utilization is totally different from UACatcher.

4To support BSD API, /dev/ptyX is used for master devices and
/dev/ttyX for slave devices.

5This is also reported and fixed now in upstream

82145

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

To be specific, Frankenstein leverages pseudoterminal as a
bridge to allow the user space fuzzer to talk to the operating
system and handles the details by using the existing tool
btattach. In comparison, UACatcher digs into the internal
of the pseudoterminal and then implements flexible emulators
that can integrate techniques like userfaultfd which is useful
in developing practical exploits. Moreover, Frankenstein only
focuses on utilizing pseudoterminal for the BT stack while
UACatcher focuses on cases for all possible layers, such as
the Amateur Radio and Controller Area Network stack, etc.

In summary, when a detected UAC bug is estimated to be
easily triggered, we further check whether it can be triggered
via user space device emulation. If so, we start the further
auditing of this UAC to get details (e.g., the use-after-free
read/write size and offset). The idea for exploiting a use-after-
free vulnerability in kernel is straightforward: spray appro-
priate vulnerable objects to build attack primitives [22,37]. To
highlight the estimation ability of the UACatcher, we introduce
how it helps us to exploit the UAC bug shown in Fig 4.
The identified race window for this UAC is from ③ to ④.
During the estimation, UACatcher finds a time-consuming
function: sock_alloc_send_skb and a time-controllable func-
tion: memcpy_from_msg to confirm the high triggering possibil-
ity. Based on that, with the pseudoterminal-based user space
device emulation, our final exploit leverages the userfaultfd

to issue controllable page fault during the race window and
detaches the device in page fault handling to constitute a 100%
successful attack (as shown in the demo video).

VI. IMPLEMENTATION

We implement the static analysis part of UACatcher with
Python code and CodeQL v2.7.2 [38]. CodeQL is an open-
source tool developed by GitHub. It is a semantic code analysis
engine that allows the researchers to automate the security
checks and perform variant analysis on software code based
on languages such as JavaScript, TypeScript, Python, C, C++,
C#, and Go. CodeQL is based on the QL [11] query language
and provides the standard libraries, queries, extractors, and
plugins [39] to support advanced static analysis techniques,
like data flow analysis and taint analysis. Although the LLVM
infrastructure [40] is a common choice for building a static
analysis tool, UACatcher prefers CodeQL for its simplicity.
For example, as CodeQL will convert the statements in kernel
source code into classes that are able to be queried, so
UACatcher can easily find all specific statements like pointer
dereference statements.

Because there is no standard CodeQL library for the Linux
kernel, we do a porting from the user space C/C++ library.
To interact with the CodeQL engine from our Python code,
we implement a driver module with batch query optimization.
That is, for some similar queries, UACatcher will assemble
them in one batch query to optimize the efficiency. Specif-
ically, we write below types of CodeQL query in UAC
bug detection: (1) queries that collect lock/unlock functions,
deallocation functions, boundary functions, and other one-
time effort information; (2) queries that are used to deduce

calling relations for building callgraphs and flow relations for
building control-flow graphs; (3) queries that leverage points-
to techniques to find dereference sites from the deallocation
site. Other tasks, like detecting with the routine switch point
algorithm, are finished in our Python detector6.

UACatcher is the first tool that detects the UAC bugs in
Linux kernel. We hope that our work can motivate future re-
search to focus on the possible vulnerabilities related to the de-
vice cleanup routine. For reproducibility concerns, the source
code of the UACatcher and the program for device emulation
are available at https://github.com/uacatcher/uacatcher-repo.

VII. EVALUATION

This section presents the evaluation result of UACatcher.
We first introduce the setup and configuration in the evaluation
and then answer the following research questions.
RQ1: Is UACatcher able to find and detect UAC bugs?
RQ2: Is UACatcher able to estimate exploitable UAC bugs?
RQ3: Is UACatcher outperforming the state-of-the-art tools
RQ4: Is UACatcher portable to handle more targets?

A. Build CodeQL Database

Before leveraging CodeQL engine for static analysis, we
need to build the database containing all the data required
to run QL queries. In a nutshell, we should specify the
building commands to invoke the required build system in the
Linux kernel and the CodeQL extractor will extract necessary
queryable data. To analyze the entire kernel, we choose the
Linux kernel 5.11 (released in February 2021, git commit
7289e26f395b) and build the first database in allyesconfig.
However, querying such a huge database is slow and inaccu-
rate. As mentioned in Section IV, we choose layers as our
interesting targets and build layer-granularity databases for
bug detecting. To do that, UACatcher parses the Kbuild and
Makefile to obtain a list of object files that constitute a layer
and assemble the building commands based on these files.

B. Detect UAC Bugs (RQ1)

UACatcher detects UAC bugs via three phases. Thus, we
will examine the outcomes of each phase in detail.

1) Layer preparing phase

As presented in Fig. 9, UACatcher finds 1,856 target layers
extracted from 89 stacked layer components. Additionally,
UACatcher successfully gathers interface functions for 1,670
of them. Specifically, within this phase, we find and mark
88 types as shown in Table I. To check if there are any
missing types, we find all possible driver types based on
regex matching and manually verify the difference set. As
a result, no false negatives are found while the types in the
difference set are mostly virtual drivers that do nothing with
device removal. Based on these types, UACatcher finds 3,579
driver layers and gets 1,678 driver layers among them which
act as bottom layers for 178 upper layers. Since UACatcher

6One can also implement the prototype only with CodeQL, we choose to
use Python for flexibility.

92146

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Evaluation results for each phase.

finds unreg-entry functions of upper layers with heuristics
that could lead to false negatives and false positives, we
examine the outcome via two steps. Firstly, we cluster the
driver layers for which UACatcher fails to find upper layers
and manually investigate them. Consequently, we find 21 false
negatives. UACatcher fails to find them because they don’t
follow the naming rule as most upper layers do. For example,
five false negatives found in NFC subsystems use remove as
their keyword instead of unregister. To this end, we simply add
these layers into the target layers pool. Secondly, we verify the
1,856 found layers and their pinpointed unreg-entry functions
and find 17 false positives. The reason is that the naming
rule also matches some functions used to unregister something
else, such as notifiers (unregister_memory_notifier), which
are out of our expectations. Afterwards, we input 1,860 true
layers to UACatcher and get 1,670 output layers (89.8%)
whose interface functions are successfully gathered. For 190
failed cases, we manually investigate them to find out the
failure reasons. Consequently, we find that 81 of them are
fine to be ignored because they register a dummy device (e.g.,
i2c_new_dummy_device) that requires no interface functions.
Other failed cases are due to the irregular layer structure
issue which will be discussed in Section VIII.

2) dPairs locating phase

To locate the deallocation sites, we collect 16 commonly
used deallocation functions7 as shown in Table II Thus,
UACatcher successfully locates 1,155 deallocation sites for all
target layers. Based on that, UACatcher then locates 136,628
dereference sites by leveraging points-to analysis. For all these
located deallocations sites and their corresponding dereference
sites, UACatcher constructs paths that start from boundary
functions to reach those sites. With the help of these paths
and three filters mentioned in Section IV, we discard 85,538
false dPairs (2,446 from the points-to filter and 82,912 from
the other two filters). In summary, as presented by Fig. 9,
UACatcher locates 51,270 dPairs from 315 layers. With man-
ual investigation, we find that those layers for which UA-
Catcher fails to locate dPairs mostly count on other resource
deallocation mechanisms, e.g., RCU. Since those mechanisms
are intrinsically safe against UAC bugs due to their carefully
designed reference counting, we regard them as out-of-scope
sites.

7Besides, there are more customized deallocation functions for dedicated
objects. We regard them as future targets.

Fig. 10: 13 exploitable bugs and their impact. □: can read
particular data from a destroyed object; ♢: can write particular
data to a destroyed object; △: can cause Denial of Service
(DoS); ⋆: the destroyed object is viewed as a normal object to
do complex tasks. All these bugs are reported and confirmed.

3) UAC detecting phase

As shown in Fig. 9, for 51,270 located dPairs, UACatcher
detects 436 dPairs that lead to UAC bugs. We identify 346
of them as true positives and present the distribution detail
in Table III. Among them, 337 are new bugs that were first
disclosed by us. All of these bugs are under the reporting
procedure and 277 have been confirmed and fixed by the
community. With manual investigation into 90 false alarms,
we find out that 33 of them come from inaccurate points-to
sites. That is, the object being dereferenced is not necessarily
the released object at runtime. For example, the deallocation
sites of 26 cases not only release the object but also remove the
object from a dynamic hashed list hence the dereference sites
located by the points-to analysis actually access a different ob-
ject in the same list. Additionally, other 57 cases are detected
due to UACatcher’s incomplete support of synchronizations
and path constraints. Specifically, 29 of them are associated
with reference counters that are difficult to analyze [41]. The
remaining cases are associated with advanced synchronizations
like semaphore, completion, and waitqueue. Due to their
limited quantities, we decided to manually handle them.
Answer to RQ1: UACatcher is able to find and detect UAC
bugs.

C. Estimate UAC Bugs (RQ2)

As mentioned in Section V, UACatcher regards whether a
bug is exploitable according to two key points: (1) if the identi-
fied race window is large enough or could be manipulated; (2)
if this UAC bug can be exploited via pseudo-terminal devices.
Based on that, UACatcher finds 13 exploitable bugs among
all detected true UAC bugs. as shown in Fig. 10. The listed
table also gives the description and impact of these 13 bugs.
Seven of them are found in the Bluetooth stack layer, two of
them are from the NFC stack layer and the remaining four are
from the AX25 net layer and MCTP layer. Importantly, except
for the two bugs found in the NFC stack layer that require
no privilege, the other nine bugs only require CAP_NET_ADMIN

privilege. That is, none of them requires root privilege to
exploit. We note that the ⋆ marked bugs in Fig. 10 own great

102147

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

exploitability. The dereference sites for these two bugs are not
for instantly read or write action like the other bugs. These
sites are used to obtain a child object that will perform a
series of tasks. Therefore, with the heap spray approach, we
can craft a malicious object and let our own object perform
those tasks. If there is a code pointer in this child object, we
can spray this pointer with the gadget address, hence a PC
hijacking primitive is easily gained. As a matter of fact, we
have developed a complete exploit for the sixth bug which
gains a kernel space arbitrary code execution primitive and
achieves the Local Privilege Escalation (LPE). In detail, this
exploit makes use of the userfaultfd approach two times. The
first registered page-fault handler acts as the routine switch
point to hang the syscall routine and start the device cleanup
routine. At the same time, another registered page-fault handler
combines the setxattr approach, which is a popular system
call for heap spraying [31], to fill the malicious payload into
the deallocated object. Moreover, a thread is created and keeps
emulating a new device for creating legal workqueues, because
we expect the already destroyed workqueue to be fetched and
used by the kernel. Otherwise, the exploitation fails as the
hijacked code pointer registered in a destroyed workqueue is
not going to be scheduled. This LPE exploit is included in the
xairy’s repo [42].
Answer to RQ2: UACatcher is able to estimate exploitable
and highly risky UAC bugs.

D. Compare with DCUAF (RQ3)

UACatcher outperforms the existing tool [10]8 in two ways.
Bug Detections: We compare the capability of detecting UAC
bugs between UACatcher and DCUAF [10] and the results are
presented in Fig. 11. Specifically, the DCUAF only locates
16,832 dPairs and detects 9,820 from them. By manually
investigating the result, we find that DCUAF doesn’t find or
detect any new results compared with UACatcher. That is, the
located dPairs, the detected dPairs, as well as the 130 true bugs
found by DCUAF are a true subset of UACatcher’ results. The
poor performance of DCUAF is mainly due to two reasons.
Firstly, DCUAF and its solution mostly concentrate on the
driver layer and should not be directly ported to other upper
layers. Secondly, the lockset detection algorithm is insufficient
for detecting UAC just as discussed in Section IV-C. We
note that UACatcher’s accuracy comes with a price: it takes
about 8x time compared with the DCUAF because it concerns
not only synchronizations like locks but also path constraints.
We consider this price is affordable because UACatcher also
identifies the race window of the bug which is extremely
helpful for analyzing and estimating the bug.
Bug Estimation: As we discuss ahead, UACatcher is able to
estimate the detected UAC bugs and find exploitable ones. In
contrast, the state-of-the-art tool does not have this ability. It
provides no additional information to help users to reproduce
the detected bugs while UACatcher outputs routine switch de-

8Since this tool is not open source, we developed a QL version of it as a
comparison

Fig. 11: Evaluation against the state-of-the-art.

tails that help users to debug the race. In practice, UACatcher
finds 13 exploitable bugs as shown in Fig. 10.

To sum up, UACatcher outperforms the state-of-the-art tools
since it can detect more UAC bugs with fewer false alarms and
can also help estimate exploitable bugs.
Answer to RQ3: UACatcher outperforms the state-of-the-art
tool DCUAF.

E. Adapt UACatcher to New Target (RQ4)

UACatcher is a portable tool that applies to different ver-
sions of the Linux kernel. It costs us no more than one
hour to port UACatcher from 5.11 (git commit 7289e26f395b)
kernel to 5.15 (git commit 583be982d934). Additionally, UA-
Catcher successfully detects one exploitable UAC bug from
the Management Component Transport Protocol (MCTP) layer
that was first released in the 5.15 version (already shown in
Fig. 10). This bug is quite similar to the bug we disclosed
in the BT stack as this one can also be exploited with the
userfaultfd approach.
Answer to RQ4: UACatcher can be ported to handle new
targets easily.

VIII. DISCUSSION

A. Analyzing the Kernel in Layers Granularity

For efficiency and accuracy sake, UACatcher conducts anal-
ysis and detection in layers granularity instead of the entire
kernel. To accomplish that, UACatcher first finds driver layers
based on pre-collected driver structures. It then finds upper lay-
ers based on call relations and heuristics-based characteristics.
Even though the outcome is acceptable in practice, it brings out
unnecessary false positives and false negatives. Additionally,
we find layers with irregular layer structure. That is, unlike
what is presented in Fig. 3, the found layer could have a more
complex structure, e.g., mixed with multiple lower or upper
layers. Since UACatcher currently does not support irregular
layer structure, potential false negatives are raised. To avoid
the above false results, we should give up the heuristics and
spend more manual efforts on modeling the upper layers. We
can dive into the kernel documentation and source code to
gather the boundary functions of each subsystem into one
database. Since this task is non-trivial, we leave it as future
optimization.

B. Necessary Manual Efforts

Efforts for running UACatcher As mentioned in Sec-
tion II-A and IV-A, UACatcher leverages the device driver

112148

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

model knowledge and cleanup routine knowledge to find
driver layers. Within this procedure, we manually mark the
pointer field responsible for device removal for all found driver
structures. We note that this is accurate and low-cost due to
the detailed comment of each driver type. Moreover, manual
efforts are required to estimate exploitable UAC bugs. We
have to manually prepare an emulated device and develop
a Proof-of-Concept (PoC). To avoid duplication of work, we
put the code for device emulation into one shared library and
prepare PoC templates. There are tools [22,28,37] available
that achieve automatic PoC or exploit generation. However,
because most of these works rely on fuzzing techniques and
cannot accurately handle the CUAF case, we prefer to write the
PoC manually. Also, we have to manually prepare patches for
all detected UAC bugs and work together with the community
to fix them. Fortunately, since we summarized a set of rules
to fix a UAC bug, this task is not difficult.
Efforts for evaluating UACatcher To achieve comprehensive
evaluation, manual efforts are needed to investigate the results
of each phase of UACatcher. As demonstrated in Section VII,
since heuristics are used in the dPairs Preparing phase, we
need to analyze the false negatives and false positives from
the found layers and their boundary functions. Additionally,
for all detected UAC bugs, we manually confirm the true
positives. As pointed out in Section III, we believe manually
analyzing, and even triggering these bugs is important. If we
do not validate these, possible false alarms will cause an
unnecessary burden to the kernel community. Specifically, the
entire confirmation process costs roughly 80 human hours,
which we regard as affordable.

C. How to Fix and Prevent UAC bugs

The direct solution to fix a UAC bug is to add appropriate
constraint changes and checks, according to the examples
shown in Fig. 6 and Fig. 7. The added code is supposed to
satisfy the below requirements: (1) The constraint check site
and the dereference site are protected by the same lock to
make sure no context switch points can be injected between
them. (2) The constraint change site should be placed before
the deallocation site or after the deallocation site but in the
same critical section. If these two requirements are satisfied,
no routine switch points can be found to raise UAC bugs.

However, not all UAC bugs can be fixed with the afore-
mentioned solution, as the lock used to protect the constraints
may conflict with the existing locks. For example, we have
confronted a bug that cannot be easily fixed since there is a
rwlock (spinlock type) already held there while we need to add
another mutex_lock. This is impossible since sleep-able locks
like the mutex_lock are forbidden inside a rwlock to avoid
blocking a CPU core. It took us and the maintainer weeks to
work out a solution to fix this bug, which we called cleanup
deferring. All the destructive actions that release resource
objects are deferred to the final cleanup point in this fix9. This

9kernel commit e04480920d1 ”Bluetooth: defer cleanup of resources in
hci unregister dev”

1270. void nci_unregister_device(struct nci_dev *ndev) {
……

1276. destroy_workqueue(ndev->cmd_wq);
1277. destroy_workqueue(ndev->rx_wq);
1278. destroy_workqueue(ndev->tx_wq);

……
1285. nfc_unregister_device(ndev->nfc_dev);
1286. }

net/nfc/nci/core.c

Fig. 12: The destructive actions that release the workqueue
(marked in red) should be reordered to after the upper layer
unreg-entry function nfc_unregister_device.

solution fixes the UAC bug by making sure that no resource
is deallocated before a dereference action can occur.

Furthermore, our study finds that the destructive actions in
the current layer are suggested to be performed after its upper
layer has finished the cleanup routine. For example, Fig. 12
shows how the NCI layer should fulfill this requirement. The
deallocation sites are originally placed before the unreg-entry
function nfc_unregister_device of the upper NFC layer. This
means that the resource can be destroyed even before the upper
layer becomes aware of the device detachment. By deferring
these three destroy_workqueue functions, no resources will be
released until the upper layer finishes the cleanup.

From all the above solutions to fix an existing UAC bug, we
can conclude the notes to prevent the introduction of new UAC
bugs. Firstly, it is suggested to manage resource objects that
are shared between different layers with a reference counter.
This can efficiently hinder use-after-bug since the object
will not be released once there is still an active reference.
Additionally, for objects that are hard to incorporate with the
reference counter, the deallocation sites should be deferred
until the other layers are noticed with the device detachment
or be protected with appropriate locks and constraints.

D. Detecting Other CUAF Bugs

Use-After-Cleanup (UAC) is defined as a CUAF bug that is
triggered when a device is detached. As demonstrated in Fig. 1
and Fig. 3, the root cause of a UAC bug is the flaw in syn-
chronization between the bottom-up cleanup routine and top-
down syscall routine. For other CUAF bugs, the deallocation
and dereference can be associated with other routines. That is,
there can be different routine combinations such as routines
both from devices (e.g., master device and slave device), and
routines both from user space programs. (e.g., IPC and RPC).
To extend UACatcher to detect CUAF bugs that are associated
with other routines, the only required efforts are to find the
new boundary functions for these routines. Once that task
is fulfilled, UACatcher can locate the dPairs and detect true
UAC bugs from them directly. Since it is non-trivial to model
boundary functions out of the device domains, we leave this
extension as future work.

IX. RELATED WORK

A. Detecting Concurrency Bugs in Kernel

Static Analysis. Most static analysis-based tools use methods
such as dataflow analysis, happens-before analysis, lockset
analysis, and symbolic execution to detect concurrency bugs.

122149

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

For example, RELAY [16] uses a relative lockset algorithm
that could summarize functions that are independent of calling
context to detect data races on millions of lines of code.
RacerX [15] uses inter-procedural analysis to detect possible
deadlocks and data races. DSAC [43] is a static analysis
tool based on LLVM for detecting sleep-in-atomic-context
concurrency bugs on kernel modules. It uses flow-sensitive
and heuristics-based methods to detect bugs and generates fix
commits automatically. DCUAF [10] is the state-of-the-art tool
to detect CUAF bugs in Linux device drivers. It first adopts a
local-global strategy to find concurrent interface pairs and then
performs lockset analysis to detect CUAF bugs. However, the
methods in these works fail to accurately detect UAC bugs.
Dynamic Analysis. The common dynamic analysis methods
for detecting concurrency bugs include fuzzing, dynamic bi-
nary instrumentation, and so on. Redflag [44] is a kernel
concurrency bugs detector based on dynamic binary instru-
mentation. It records useful information such as memory
access operations caused by shared variables, and the use
of synchronization functions. After that, it then uses lockset
analysis and the algorithm of atomic violation to detect bugs.
CONZZER [18] is a concurrency fuzzing framework that
leverages context-sensitive and directional fuzzing approach
for thread-interleaving exploration. With a customized muta-
tion algorithm and breakpoint-control method, it can detect
hard-to-find data races. Though many concurrency bugs are
found by dynamic analysis methods, there are many limitations
of using such methods to find UAC bugs. Firstly, most dynamic
tools have no improvements to help explore states in the
concurrency dimension hence rely on luck to trigger a UAC
bug. More importantly, dynamic methods are generally not
scalable, hence it will take too much effort to support all target
layers found by UACatcher.
Hybrid Analysis. The hybrid analysis usually adopts both
static analysis and dynamic analysis to strengthen the bug
finding ability. KRACE [45] uses hybrid analysis to detect
data race in the file system. It uses an evolutionary algorithm
to generate inputs suitable for concurrency fuzzing and uses
both alias coverage and branch coverage to guide fuzzing.
Additionally, it collects information of coverage and execu-
tion logs and uses offline happen-before analysis and lockset
analysis to detect the data races. RAZZER [46] is another
hybrid race conditions detecting tool. It firstly uses static
analysis to find the potential alias pairs in the kernel. Then,
it uses fuzzing to generate system calls that could reach these
alias pairs. Finally, it detects whether the alias pairs trigger a
data race by hypervisor watchpoints. In future work, we can
adopt similar techniques such as the log-based analysis and
hypervisor watchpoints to help reproduce UAC bugs, which
saves manual efforts.

B. Detecting and Mitigating Use-After-Free Bugs

Detecting Use-After-Free Bugs Most methods try to detect
UAF bugs by dynamic analysis such as instrumentation or
prediction. For example, UAFL [47] is a typestage-guided
fuzzer. It first uses typestate analysis to extract the operation

sequences that may lead to potential UAF vulnerabilities. It
then instruments the target program to enable the collection
of operation sequence coverage. This special coverage is used
as feedback to guide the fuzzer. UFO [48] is a tool that
detects UAF bugs in browsers. It first uses multi-threaded
execution traces combined with happen-before relationships
to speculate the maximal execution set. It further uses UAF
constraints to find real UAF bugs from the execution set. Some
methods use static analysis to detect UAF bugs. UAFchecker
[49] adopts taint analysis and symbolic execution to make an
inter-procedural analysis to find UAF bugs. Tac [50] uses SVM
sorting algorithm to extract UAF-related aliases. It then uses
pointer analysis to detect UAF bugs. Most of these methods
only consider user space programs, hence it is difficult to port
them to the kernel for detecting UAC bugs.
Mitigating Use-After-Free Bugs. Some solutions attempt to
mitigate the UAF by taking special care of dangling pointers.
For example, MarkUs [51] is a memory allocator that could
prevent UAF bugs. It quarantines data free and prevents its
reallocation until there is no dangling pointer pointing to it.
Other solutions attempt to inject a check before dereferencing
the pointers. Watchdog [52] generates a pointer identifier based
on hardware for each memory that has been allocated and
checks if the identifier is still valid before pointer dereference.

X. CONCLUSION

In this paper, we proposed UACatcher, the first tool that fills
the gap in UAC bug detection. It first scans the entire kernel to
find target layers and collects essential information for them.
Next, it adopts the context- and flow-sensitive inter-procedural
analysis and the points-to analysis to locate possible dPairs
that can cause UAC bugs. It finally uses an algorithm named
routine switch point, to detect the UAC bugs and estimate
exploitable ones. In evaluation, UACatcher detects 346 true
bugs. All the found bugs are reported to the Linux community
and 277 of them have been confirmed and fixed and 15 CVEs
have been assigned by the time of writing this paper (July
2022). Additionally, we find 13 exploitable UAC bugs that
can be triggered via pseudoterminal-based device emulation
technique. Therefore, they can be exploited and used to
achieve the arbitrary code execution primitive in kernel space
and achieve privilege escalation.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers and
shepherd for their insightful comments that greatly helped
improve the presentation and evaluation of the paper. We also
thank the Linux kernel maintainers, especially Tetsuo Handa,
Luiz Augusto von Dentz, and Krzysztof Kozlowski, who gave
us feedback and help to fix the reported UAC bugs. This work
was partially supported by the National Key R&D Program
of China (No. 2022YFE0113200). Any opinions, findings,
conclusions, or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the funding agencies.

132150

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Syzkaller, use-after-free read in blkcg print stat,” https://groups.
google.com/g/syzkaller-bugs/c/2YJt3Pwl92Y/m/p5TltZdsAgAJ.

[2] “Syzkaller, use-after-free read in ax88172a unbind,” https://groups.
google.com/g/syzkaller-bugs/c/V7YReIFMOhk/m/UcmFU6cRAQAJ.

[3] D. Vyukov, “Syzkaller: an unsupervised, coverage-guided kernel fuzzer,”
2019.

[4] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kafl: Hardware-assisted feedback fuzzing for {OS} kernels,” in 26th
{USENIX} Security Symposium ({USENIX} Security 17), 2017, pp.
167–182.

[5] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2345–2358.

[6] S. Pailoor, A. Aday, and S. Jana, “Moonshine: Optimizing {OS} fuzzer
seed selection with trace distillation,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 729–743.

[7] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “Hfl:
Hybrid fuzzing on the linux kernel.” in NDSS, 2020.

[8] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 754–768.

[9] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data race fuzzing for
kernel file systems,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 1643–1660.

[10] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective static analysis
of concurrency use-after-free bugs in linux device drivers,” in 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019,
pp. 255–268.

[11] “Ql language.” https://securitylab.github.com/tools/codeql.
[12] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: A dynamic data race detector for multithreaded programs,”
ACM Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp.
391–411, 1997.

[13] B. Kasikci, C. Zamfir, and G. Candea, “Data races vs. data race bugs:
telling the difference with portend,” ACM SIGPLAN Notices, vol. 47,
no. 4, pp. 185–198, 2012.

[14] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, “How {Double-
Fetch} situations turn into {Double-Fetch} vulnerabilities: A study of
double fetches in the linux kernel,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 1–16.

[15] D. Engler and K. Ashcraft, “Racerx: Effective, static detection of race
conditions and deadlocks,” ACM SIGOPS operating systems review,
vol. 37, no. 5, pp. 237–252, 2003.

[16] J. W. Voung, R. Jhala, and S. Lerner, “Relay: static race detection on
millions of lines of code,” in ESEC-FSE ’07, 2007.

[17] “The kernel concurrency sanitizer (kcsan).” https://www.kernel.org/doc/
html/latest/dev-tools/kcsan.html.

[18] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu, “Context-sensitive and
directional concurrency fuzzing for data-race detection,” 2022.

[19] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and precise
symbolic analysis of concurrency bugs in device drivers (t),” in 2015
30th IEEE/ACM International Conference on Automated Software En-
gineering (ASE). IEEE, 2015, pp. 166–177.

[20] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “{DR}.{CHECKER}: A soundy analysis for linux kernel
drivers,” in 26th {USENIX} Security Symposium ({USENIX} Security
17), 2017, pp. 1007–1024.

[21] “Data-race detection in the linux kernel,” https://man7.org/linux/man-
pages/man7/pty.7.html, accessed: 2020-08-24.

[22] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for exploit-
ing vulnerabilities in the linux kernel,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1707–1722.

[23] J. Ye, C. Zhang, and X. Han, “Poster: Uafchecker: Scalable static
detection of use-after-free vulnerabilities,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
2014, pp. 1529–1531.

[24] J. Feist, L. Mounier, and M.-L. Potet, “Statically detecting use after free
on binary code,” Journal of Computer Virology and Hacking Techniques,
vol. 10, no. 3, pp. 211–217, 2014.

[25] J. Huang, “Ufo: predictive concurrency use-after-free detection,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 609–619.

[26] K. Lu and H. Hu, “Where does it go? refining indirect-call
targets with multi-layer type analysis,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 1867–1881. [Online]. Available:
https://doi.org/10.1145/3319535.3354244

[27] T. Li, J.-J. Bai, Y. Sui, and S.-M. Hu, “Path-sensitive and alias-aware
typestate analysis for detecting os bugs,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
859–872. [Online]. Available: https://doi.org/10.1145/3503222.3507770

[28] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “{FUZE}:
Towards facilitating exploit generation for kernel use-after-free vulner-
abilities,” in 27th {USENIX} Security Symposium ({USENIX} Security
18), 2018, pp. 781–797.

[29] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” ACM Sigplan Notices, vol. 42, no. 6,
pp. 446–455, 2007.

[30] jannh, “Linux: Uaf via double-fdput() in bpf(bpf prog load) error path.”
https://bugs.chromium.org/p/project-zero/issues/detail?id=808.

[31] “Linux kernel universal heap spray,” https://duasynt.com/blog/
linux-kernel-heap-spray, 2018.

[32] “Linux. ptmx(4) - linux man page.” https://linux.die.net/man/4/ptmx.
[33] “pseudoterminal interfaces linux manual page,”

https://man7.org/linux/man-pages/man7/pty.7.html, accessed: 2020-
08-13.

[34] “Pseudoterminal,” https://lpc.events/event/7/contributions/647/
attachments/549/972/LPC2020-KCSAN.pdf, last edited: 2021-11-
13.

[35] A. Rubini and J. Corbet, Linux device drivers. ” O’Reilly Media, Inc.”,
2001.

[36] J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein: Ad-
vanced wireless fuzzing to exploit new bluetooth escalation targets,”
in 29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
19–36.

[37] W. Wu, Y. Chen, X. Xing, and W. Zou, “{KEPLER}: Facilitating
control-flow hijacking primitive evaluation for linux kernel vulnerabili-
ties,” in 28th {USENIX} Security Symposium ({USENIX} Security 19),
2019, pp. 1187–1204.

[38] “Codeql for research.” https://securitylab.github.com/tools/codeql.
[39] “Codeql: the libraries and queries,” https://github.com/github/codeql,

2021.
[40] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[41] X. Tan, Y. Zhang, X. Yang, K. Lu, and M. Yang, “Detecting kernel
refcount bugs with {Two-Dimensional} consistency checking,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2471–
2488.

[42] “linux kernel exploitation.” https://github.com/xairy/
linux-kernel-exploitation.

[43] J.-J. Bai, Y. Wang, J. L. Lawall, and S. Hu, “Dsac: Effective static
analysis of sleep-in-atomic-context bugs in kernel modules,” in USENIX
Annual Technical Conference, 2018.

[44] J. Seyster, P. Radhakrishnan, S. Katoch, A. Duggal, S. D. Stoller,
and E. Zadok, “Redflag: A framework for analysis of kernel-level
concurrency,” in ICA3PP, 2011.

[45] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data race fuzzing
for kernel file systems,” 2020 IEEE Symposium on Security and Privacy
(SP), pp. 1643–1660, 2020.

[46] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” 2019 IEEE Symposium on
Security and Privacy (SP), pp. 754–768, 2019.

[47] H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu, S. Qin, H. Chen,
and Y. Sui, “Typestate-guided fuzzer for discovering use-after-free
vulnerabilities,” 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), pp. 999–1010, 2020.

142151

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

[48] J. Huang, “Ufo: Predictive concurrency use-after-free detection,” 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pp. 609–619, 2018.

[49] J. Ye, C. Zhang, and X. Han, “Poster: Uafchecker: Scalable static
detection of use-after-free vulnerabilities,” Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014.

[50] H. Yan, Y. Sui, S. Chen, and J. Xue, “Machine-learning-guided typestate
analysis for static use-after-free detection,” Proceedings of the 33rd
Annual Computer Security Applications Conference, 2017.

[51] S. Ainsworth and T. M. Jones, “Markus: Drop-in use-after-free preven-
tion for low-level languages,” 2020 IEEE Symposium on Security and
Privacy (SP), pp. 578–591, 2020.

[52] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Watchdog:
Hardware for safe and secure manual memory management and full
memory safety,” 2012 39th Annual International Symposium on Com-
puter Architecture (ISCA), pp. 189–200, 2012.

APPENDIX

Table I: Covered Driver Types and Locations

name file

acpi driver include/acpi/acpi bus.h

pci driver include/linux/pci.h

platform driver include/linux/platform device.h

eisa driver include/linux/eisa.h

ssb driver include/linux/ssb/ssb.h

bcma driver include/linux/bcma/bcma.h

pnp driver include/linux/pnp.h

pnp card driver include/linux/pnp.h

i2c driver include/linux/i2c.h

spi driver include/linux/spi/spi.h

virtio driver include/linux/virtio.h

scsi driver include/scsi/scsi driver.h

nd device driver include/linux/nd.h

pcmcia driver include/pcmcia/ds.h

parport driver include/linux/parport.h

auxiliary driver include/linux/auxiliary bus.h

isa driver include/linux/isa.h

phy driver include/linux/phy.h

i3c driver include/linux/i3c/device.h

sdw driver include/linux/soundwire/sdw.h

slim driver include/linux/slimbus.h

spmi driver include/linux/spmi.h

xenbus driver include/xen/xenbus.h

usb driver include/linux/usb.h

sdio driver include/linux/mmc/sdio func.h

serdev device driver include/linux/serdev.h

fsl mc driver include/linux/fsl/mc.h

mhi driver include/linux/mhi.h

moxtet driver include/linux/moxtet.h

scmi driver include/linux/scmi protocol.h

dax device driver drivers/dax/bus.h

pci epf driver include/linux/pci-epf.h

Continued on next page

Table I: Covered Driver Types and Locations (Continued)

idxd device driver drivers/dma/idxd/idxd.h

fw driver include/linux/firewire.h

tee client driver include/linux/tee drv.h

coreboot driver drivers/firmware/google/coreboot table.h

dfl driver drivers/fpga/dfl.h

fsi driver include/linux/fsi.h

mcb driver include/linux/mcb.h

siox driver include/linux/siox.h

mipi dsi driver include/drm/drm mipi dsi.h

drm i2c encoder driver include/drm/drm encoder slave.h

mdev driver include/linux/mdev.h

amba driver include/linux/amba/bus.h

greybus driver include/linux/greybus.h

hid driver include/linux/hid.h

hv driver include/linux/hyperv.h

rmi driver include/linux/rmi.h

usb device driver include/linux/usb.h

ishtp cl driver include/linux/intel-ish-client-if.h

hsi client driver include/linux/hsi/hsi.h

intel th driver drivers/hwtracing/intel th/intel th.h

serio driver include/linux/serio.h

ide driver include/linux/ide.h

gameport driver include/linux/gameport.h

ipack driver include/linux/ipack.h

bttv sub driver drivers/media/pci/bt8xx/bttv.h

rpmsg driver include/linux/rpmsg.h

radio isa driver drivers/media/radio/radio-isa.h

memstick driver include/linux/memstick.h

tifm driver include/linux/tifm.h

mei cl driver include/linux/mei cl bus.h

mmc driver drivers/mmc/core/bus.h

spi mem driver include/linux/spi/spi-mem.h

mdio driver include/linux/mdio.h

tc driver include/linux/tc.h

tb service driver include/linux/thunderbolt.h

pcie port service driver drivers/pci/pcie/portdrv.h

ulpi driver include/linux/ulpi/driver.h

asus wmi driver drivers/platform/x86/asus-wmi.h

wmi driver include/linux/wmi.h

rio driver include/linux/rio.h

apr driver include/linux/soc/qcom/apr.h

usb gadget driver include/linux/usb/gadget.h

tty ldisc ops include/linux/tty ldisc.h

anybuss client driver drivers/staging/fieldbus/anybuss/anybuss-
client.h

gbphy driver drivers/staging/greybus/gbphy.h

visor driver include/linux/visorbus.h

Continued on next page

152152

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

Table I: Covered Driver Types and Locations (Continued)

bcm2835 audio driver drivers/staging/vc04 services/bcm2835-
audio/bcm2835.c

vme driver include/linux/vme.h

usb composite driver include/linux/usb/composite.h

snd seq driver include/sound/seq device.h

usb serial driver include/linux/usb/serial.h

typec altmode driver include/linux/usb/typec altmode.h

vdpa driver include/linux/vdpa.h

hdac driver include/sound/hdaudio.h

hda codec driver include/sound/hda codec.h

ac97 codec driver include/sound/ac97/codec.h

Table II: Collected Deallocation Functions.

name file

destroy workqueue include/linux/workqueue.h

kfree sensitive include/linux/slab.h

kfree include/linux/slab.h

kmem cache free include/linux/slab.h

kvfree include/linux/mm.h

kfree const include/linux/string.h

kfree skb include/linux/skbuff.h

kfree sensitive mm/slab common.c

kfree mm/slub.c

crypto free shash include/crypto/hash.h

kvfree mm/util.c

kmem cache free mm/slub.c

kfree skb net/core/skbuff.c

kfree const mm/util.c

destroy workqueue kernel/workqueue.c

rfkill destroy net/rfkill/core.c

162153

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Distribution of the found true UAC Bugs: Among them, 346 are found in the 5.11 kernel and an additional one
(given in the last line) is found in the 5.15 kernel. Refer to Sec II for the detail meaning of the field Layer Type.

Domain Layer Type Code Directory UAC Bugs
ATM device driver (pci driver) drivers/atm/ 22
Conexant cx23418 multimedia device driver (pci driver) drivers/media/pci/cx18 1
Chelsio network device driver (pci driver) drivers/net/ethernet/chelsio/cxgb4/ 3
Intel network device driver (pci driver) drivers/net/ethernet/intel/igb/ 30
QLogic network device driver (pci driver) drivers/net/ethernet/qlogic/qede/ 1
Skylake/SST sound device driver (pci driver) sound/soc/intel/skylake/ 17
VSP1 video device driver (platform driver) drivers/media/platform/vsp1/ 4
WIZnet devices driver (platform driver) drivers/net/ethernet/wiznet/ 1
cJTAG misc device driver (pti pci remove) drivers/misc/ 7
Keystream device driver (sdio driver) drivers/staging/ks7010/ 7
IEEE802154 device driver (spi driver) drivers/net/ieee802154/ 1
Hamradio device driver (tty ldisc ops) drivers/net/hamradio/ 23
AX25 netstack upper net/ax25/ 118
BT netstack upper net/bluetooth/ 88
DVB core upper drivers/media/dvb-core/ 1
MAC802154 netstack upper net/mac802154/ 1
NFC NCI stack upper net/nfc/nci/ 7
NCSI netstack upper net/ncsi/ 6
NFC netstack upper net/nfc/ 1
STM core upper drivers/hwtracing/stm/ 7
MCTP netstack upper net/mctp 1

172154

Authorized licensed use limited to: Zhejiang University. Downloaded on August 18,2023 at 03:45:01 UTC from IEEE Xplore. Restrictions apply.

